Skip to main content
Log in

Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Glucose is the substrate most widely used as exogenous carbon source for heterotrophic cultivation of cyanobacteria. Due to limited information about the use of different carbohydrates as carbon sources to support cyanobacterial heterotrophic metabolism, the objective of this work was to evaluate different monosaccharides (arabinose, fructose, galactose, glucose, mannose and xylose), disaccharides (lactose, maltose, sucrose and trehalose) and polysaccharides (carboxymethylcellulose, cassava starch, Hi-maize®, maltodextrin Corn Globe 1805® and xylan) as exogenous carbon source for heterotrophic culture of cyanobacterium Phormidium sp. The batch cultivation using fructose as organic carbon source resulted in the highest (p < 0.05) cell biomass (5,540 mg/L) in parallel with the highest (p < 0.05) substrate yield coefficient (0.67 mgbiomass/mgfructose). Mannose was the carbon source with the highest (p < 0.05) substrate consumption rate (3,185.7 mg/L/day) and maltodextrin was the carbohydrate with major potential to produce biomass (1,072.8 mgbiomass/L/day) and lipids (160.8 mglipids/L/day). Qualitatively, the fatty acid profiles of the lipid extract from Phormidium sp. showed predominance of saturated chains for the cultures grown with most of the carbon sources, with the exception of the ones grown with xylose and maltodextrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Queiroz MI, Hornes MO, Silva-Manetti AG, Jacob-Lopes E (2011) Single-cell oil production by cyanobacterium Aphanothece microscopica Nägeli cultivated heterotrophically in fish processing wastewater. Appl Energy 88:3438–3443

    Article  CAS  Google Scholar 

  2. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  Google Scholar 

  3. Smith AJ (1982) In: Carr NG, Whitton BA (eds) Modes of cyanobacterial carbon metabolism. The biology of cyanobacteria. University of California Press, Berkeley

    Google Scholar 

  4. Fay P (1983) The Blue–Greens (CyanophytaCyanobacteria). In: Edward Arnold (ed) The Institute of Biology’s, Studies in Biology, no 160

  5. Perez-Garcia O, Bashan Y, Puente ME (2011) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. J Phycol 47:190–199

    Article  Google Scholar 

  6. Lee YK (2004) Algal nutrition. Heterotrophic carbon nutrition. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Publishing, Oxford

    Google Scholar 

  7. Poole RJ (1978) Energy coupling for membrane transport. Annu Rev Plant Physiol 29:437–460

    Article  CAS  Google Scholar 

  8. Al-Thukair AA, Abed RMM, Mohamed L (2007) Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia. Mar Pollut Bull 54:173–179

    Article  CAS  Google Scholar 

  9. Cañizares-Villanueva RO, Ramos A, Lemus R, Gomez-Lojero C, Travieso L (1994) Growth of Phormidium sp. in aerobic secondary piggery wastewater. Appl Microbiol Biotechnol 42:487–491

    Article  Google Scholar 

  10. Guiry MD, Guiry, GM (2013) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org searched on October 2013

  11. Rippka R, Derueles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  12. APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. Prot City Press, Baltimore

    Google Scholar 

  13. Bligh EG, Dyer JW (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phisiol 37:911–917

    Article  CAS  Google Scholar 

  14. Hartman L, Lago RCA (1976) A rapid determination of fatty acid methyl esters from lipids. Lab Prat 22:475–476

    Google Scholar 

  15. StatSoft, Inc. (2004) STATISTICA for Windows (Computer program manual). http://www.statsoftinc.com

  16. Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue–green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    Article  CAS  Google Scholar 

  17. Knowles VL, Plaxton WC (2003) From genome to enzyme: analysis of key glycolytic and oxidative pentose-phosphate pathway enzymes in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 44:758–763

    Article  CAS  Google Scholar 

  18. Wolk CP, Shaffer PW (1976) Heterotrophic micro- and macrocultures of a nitrogen-fixing cyanobacterium. Arch Microbiol 100:145–147

    Article  Google Scholar 

  19. Raboy B, Padan E (1978) Active transport of glucose and α-methylglucoside in the cyanobacterium Plectonema boryanum. J Biol Chem 253:3287–3291

    CAS  Google Scholar 

  20. Hong SJ, Lee CG (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12:165–173

    Article  CAS  Google Scholar 

  21. Osanai T, Kanesaki Y, Nakano T, Takahashi H, Asayama M, Shirai M, Kanehisa M, Suzuki I, Murata N, Tanaka K (2005) Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the Group 2 factor SigE. J Biol Chem 35:30653–30659

    Article  Google Scholar 

  22. Fuchs B, Suttner P, Sterner S, Wastlhuber R, Loos E (1994) Disproportionating transglycosylase (d-enzyme) in green algae and cyanobacteria. Partial purification and characterization. Zeitschrift für Naturforschung 49:163–170

    CAS  Google Scholar 

  23. Reyes-Sosa FM, Molina-Heredia FP, De la Rosa MA (2010) A novel α-amylase from the cyanobacterium Nostoc sp. PCC 7119. Appl Microbiol Biotechnol 86:131–141

    Article  CAS  Google Scholar 

  24. Gupta V, Natarajan C, Kumar K, Prasanna R (2011) Identification and characterization of endoglucanases for fungicidal activity in Anabaena laxa (Cyanobacteria). J Appl Phycol 23:73–81

    Article  CAS  Google Scholar 

  25. Wood T (1885) The pentose phosphate pathway. Academic Press Inc, Orlando

    Google Scholar 

  26. Pearce J, Carr NG (1969) The incorporation and metabolism of glucose by Anabaena variabilis. J Gen Microbiol 54:451–462

    Article  CAS  Google Scholar 

  27. Pelroy RA, Basshan JA (1972) Photosynthetic and dark carbon metabolism in unicellular blue–green algae. Archiv für Mikrobiologie 86:25–38

    Article  CAS  Google Scholar 

  28. van den Hoek C, Mann DG, Jahns HM (1995) Algae—an introduction to phycology. Press Sindicate of the University of Cambridge, New York

    Google Scholar 

  29. Li XF, Xu QY (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  Google Scholar 

  30. Lu Y, Zhai Y, Liu M, Wu Q (2010) Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. J Appl Phycol 22:573–578

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by São Paulo Research Foundation (FAPESP, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Jacob-Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francisco, É.C., Franco, T.T., Wagner, R. et al. Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess Biosyst Eng 37, 1497–1505 (2014). https://doi.org/10.1007/s00449-013-1121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1121-1

Keywords

Navigation