Skip to main content

Advertisement

Log in

Conversion of carbon dioxide to oxaloacetate using integrated carbonic anhydrase and phosphoenolpyruvate carboxylase

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The development and implementation of strategies for CO2 mitigation are necessary to counteract the greenhouse gas effect of carbon dioxide emissions. To demonstrate the possibility of simultaneously capturing CO2 and utilizing four-carbon compounds, an integrated system using CA and PEPCase was developed, which mimics an in vivo carbon dioxide concentration mechanism. We first cloned the PEPCase 1 gene of the marine diatom Phaeodactylum tricornutum and produced a recombinant PtPEPCase 1. The affinity column purified PtPEPCase 1 exhibited specific enzymatic activity (5.89 U/mg). When the simultaneous and coordinated reactions of CA from Dunaliella sp. and the PtPEPCase 1 occurred, more OAA was produced than when only PEPCase was present. Therefore, this integrated CA-PEPCase system can be used not only to capture CO2 but also for a new technology to produce value-added four-carbon platform chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dawson B, Spannagle M (2009) The complete guide to climate change, 1st edn. Routledge, New York

    Google Scholar 

  2. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992

    Article  Google Scholar 

  3. Lee SW, Park SB, Jeong SK, Lim KS, Lee SH, Trachtenberg MC (2010) On carbon dioxide storage based on biomineralization strategies. Micron 41:273–282

    Article  CAS  Google Scholar 

  4. Kanth BK, Min K, Kumari S, Jeon H, Jin E, Lee J, Pack SP (2012) Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO2 sequestration application. Appl Biochem Biotechnol 167:2341–2356

    Article  CAS  Google Scholar 

  5. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  Google Scholar 

  6. Raven JA, Giordano M, Beardall J (2008) Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes. Physiol Plant 133:4–14

    Article  CAS  Google Scholar 

  7. Matsuda Y, Nakajima K, Tachibana M (2011) Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res 109:191–203

    Article  CAS  Google Scholar 

  8. Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions. Photosynth Res 77:139–153

    Article  CAS  Google Scholar 

  9. Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Env 241:141–153

    Article  Google Scholar 

  10. Matsuda Y, Hara T, Colman B (2001) Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom, Phaeodactylum tricornutum. Plant Cell Environ 24:611–620

    Article  CAS  Google Scholar 

  11. Raven JA, Girard-Bascou J (2001) Algal model systems and the elucidation of photosynthetic mechanisms. J Phycol 37:943–950

    Article  CAS  Google Scholar 

  12. Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    Article  CAS  Google Scholar 

  13. McGinn PJ, Morel FMM (2008) Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol 146:300–309

    Article  CAS  Google Scholar 

  14. Norici A, Dalsass A, Giordano M (2002) Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. Physiol Plant 116:186–191

    Article  CAS  Google Scholar 

  15. Kwon YD, Kwon OH, Lee SH, Kim P (2007) The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J Appl Microbiol 103:2340–2345

    Article  CAS  Google Scholar 

  16. Hwang ET, Gang H, Chung J, Gu MB (2012) Carbonic anhydrase assisted calcium carbonate crystalline composites as a biocatalyst. Green Chem 14:2216–2220

    Article  CAS  Google Scholar 

  17. Ramanan R, Kannan K, Sivanesan SD, Mudiar S, Kaur S, Tripathi AK, Chakrabrti T (2009) Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World J Microbiol Biotechnol 25:981–987

    Article  CAS  Google Scholar 

  18. Izui K, Matsumura H, Furumoto T, Kai Y (2004) Phosphoenolphyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol 55:69–84

    Article  CAS  Google Scholar 

  19. O’Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insight into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436:15–34

    Article  Google Scholar 

  20. Ki M-R, Kanth BK, Min KH, Lee J, Pack SP (2012) Increased expression level and catalytic activity of internally-duplicated carbonic anhydrase from Dunaliella species by reconstitution of two separate domains. Process Biochem 47:1423–1427

    Article  CAS  Google Scholar 

  21. Perotti VE, Figueroa CM, Andreo CS, Iglesias AA, Podestá FE (2010) Cloning, expression, purification and physical and kinetic characterization of the phosphoenolpyruvate carboxylase from orange (Citrus sinensis osbeck var. Valencia) fruit juice sacs. Plant Sci 179:527–535

    Article  CAS  Google Scholar 

  22. Maeba P, Sanwal BD (1969) Phosphoenolpyruvate carboxylase from Salmonella typhimurium strain LT2. Method Enzymol 13:283–288

    Article  CAS  Google Scholar 

  23. Cánovas JL, Kornberg HL (1969) Phosphoenolpyruvte carboxylase from Escherichia coli. Method Enzymol 13:288–292

    Article  Google Scholar 

  24. Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C (2008) A model for carbohydrate metabolism in the diatom Phaedactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426

    Article  Google Scholar 

  25. Wostrikoff K, Clark A, Sato S, Clemente T, Stern D (2012) Ectopic expression of Rubisco subunits in maize mesophyll cells does not overcome barriers to cell type-specific accumulation. Plant Physiol 160:419–432

    Article  CAS  Google Scholar 

  26. Mamedov TG, Moellering ER, Chollet R (2005) Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryoutic phosphoenolpyruvate carboxylase in the green microalga Chlamydomonas reinhardtii. Plant J 42:832–843

    Article  CAS  Google Scholar 

  27. O’Leary B, Rao SK, Kim J, Plaxton WC (2009) Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants. J Biol Chem 284:24797–24805

    Article  Google Scholar 

  28. Park J-M, Kim M, Lee HJ, Jang A, Min J, Kim Y-H (2012) Enhancing the production of Rhodobacter sphaeroides-derived physiologically active substance using carbonic anhydrase-immobilized electrospun nanofibers. Biomacromoluclues 13:3780–3786

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant (NRF-C1ABA001-2010-0020501) and also a Korea CCS R&D Center (KCRC) (NRF-2011-0031999) funded by the Korean Government (Ministry of Science, Ict & Future Planning).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EonSeon Jin.

Additional information

K. S. Chang and H. Jeon contribute equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, K.S., Jeon, H., Gu, M.B. et al. Conversion of carbon dioxide to oxaloacetate using integrated carbonic anhydrase and phosphoenolpyruvate carboxylase. Bioprocess Biosyst Eng 36, 1923–1928 (2013). https://doi.org/10.1007/s00449-013-0968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0968-5

Keywords

Navigation