Skip to main content

Sequestration of Carbon Dioxide by Microorganism and Production of Value Added Product

  • Chapter
  • First Online:
Environmental Microbiology and Biotechnology

Abstract

The rising carbon dioxide (CO2) emission leading to global climate change is one of the greatest environmental challenges that the world faces today. The link between the anthropogenic CO2 emissions and its increased atmospheric concentration resulting in global average temperature rise and consequent sea level rise is well established. The CO2 mitigation can be achieved by three means: first by improving energy efficiency, second by CO2 capture and sequestration, and the third option is use of alternative clean fuels (biohydrocarbon, biodiesel, etc.). The most important global carbon sinks are green plants, algae, and some photosynthetic and chemolithotrophic bacteria. Some microbes fix CO2 with the help of special enzymes such as carbonic anhydrase, Rubisco, and other carboxylases. These include the Calvin cycle, reductive tricarboxylic acid cycle, Hydroxypropionate–hydroxybutyrate cycle, Dicarboxylate–hydroxybutyrate cycle, and 3-hydroxypropionate pathway. Calvin cycle is the most prominent cycle found in the autotrophic organism and Rubisco is the key enzyme for CO2 fixation. In this scheme, the sugar bisphosphate ribulose-1, 5-bisphosphate (RuBP) serves as the acceptor molecule for CO2, with the enzyme Rubisco catalyzing the actual primary CO2 fixation reaction. Carbonic anhydrase (CA) is a zinc-containing enzyme that catalyzes the reversible dehydration of HCO3 to CO2. Here the CA functions to convert an accumulated cytosolic pool of HCO3 into CO2 within the carboxysome. It can assist in elevating CO2 concentrations around Rubisco. Some microbes synthesize valuable products such as different types of alkanes/alkenes/Lipids/TAG which can be utilized for biofuel production after sequestration of CO2. Biodiesel is produced from TAG by transesterification reaction in the presence of methanol and catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfreider A, Vogt C, Hoffmann D, Babel W (2003) Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms. Microb Ecol 45:317–328

    Article  CAS  Google Scholar 

  • Alvarez HM, Luftmann H, Silva RA, Cesari AC (2002) Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax esters produced by R. opacus PD630. Microbiology 148:1407–1412

    Article  CAS  Google Scholar 

  • Aresta M, Dibenedetto A, Carone M, Colonna T, Fagale C (2005) Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ Chem Lett 3:136–139

    Article  CAS  Google Scholar 

  • Ashida H, Saito Y, Kojima C, Kobayashi K, Ogasawara N, Yokota A (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302:286–290

    Article  CAS  Google Scholar 

  • Ashida H, Danchin A, Yokota A (2005) Was photosynthetic RubisCO recruited by acquisitive evolution from RubisCO-like proteins involved in sulfur metabolism? Res Microbiol 156:611–618

    Article  CAS  Google Scholar 

  • Atomi H (2002) Microbial enzymes involved in carbon dioxide fixation. J Biosci Bioeng 94:497–505

    Article  CAS  Google Scholar 

  • Badger MR, Bek EJ (2008) Multiple RubisCO forms in Proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 59:1525–1541

    Article  CAS  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609–622

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisty Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279

    Article  CAS  Google Scholar 

  • Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189:228–235

    Article  CAS  Google Scholar 

  • Braissant O, Guillaume C, Christophe D, Verrecchia EP (2003) Bacterially Induced Mineralization of Calcium Carbonate in Terrestrial Environments: The Role of Exopolysaccharides and Amino Acids Journal of Sedimentary Research 73(3):485–490

    Google Scholar 

  • Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786

    Article  CAS  Google Scholar 

  • Berg IA et al (2010) Autotrophic carbon fixation in Archaea. Nat Rev Microbiol 8:447–460

    Article  CAS  Google Scholar 

  • Bockey D, von Schenck W (2005) Status report – biodiesel production and marketing in Germany Berlin, Germany: Union for the Promotion of Oil and Protein Plants (UFOP)

    Google Scholar 

  • Boyer RF (2006) Concepts in biochemistry, 3rd edn. Wiley, cop, Hoboken NJ

    Google Scholar 

  • Buchanan BB, Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosyn Res 24:47–53

    Google Scholar 

  • Calvin M, Massini P (1952) The path of carbon in photosynthesis. The steady state. Experientia 8(12):445–457

    Article  CAS  Google Scholar 

  • Castanier S, Le Méteyer-Levrel G, Martire L (2000) Bacterial roles in the precipitation of carbonate minerals. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Heidelberg, pp 32–39

    Chapter  Google Scholar 

  • Dania V, Zamarren RI, Eric M (2009) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol 75(18):5981–5990

    Article  Google Scholar 

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Con Manag 49:2106–2116

    Article  CAS  Google Scholar 

  • Evans MC, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci 55(4):928–934

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Political, economic and environmental impacts of biofuels: A review Applied Energy 86, S108–S117

    Google Scholar 

  • Ferrer MR, Quevedo-Sarmiento J, Rivadeneyra MA, Bejar V, Delgado G, Ramos-Cormenzana A (1988) Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr Microbiol 17:221–227

    Article  CAS  Google Scholar 

  • Gibson JL, Tabita FR (1977) Different molecular forms of D-ribulose-1,5- bisphosphate carboxylase from Rhosopseudomonas sphaeroides. J Biol Chem 252:943–949

    CAS  Google Scholar 

  • Greene CH, Pershing AJ (2007) Climate drives sea change. Science 315:1084–1085

    Article  CAS  Google Scholar 

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Environ Sci Biotechnol 1:3–7

    Article  CAS  Google Scholar 

  • Hanson TE, Tabita FR (2000) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98:4397–4402

    Article  Google Scholar 

  • Herter S, Georg F, Adelbert B, Wolfgang E (2002) Bicyclic Autotrophic CO2 Fixation Pathway in Chloroflexus aurantiacus The Journal of biological chemistry 277, 23, 20277–20283

    Google Scholar 

  • IPCC (2001) Climate change. 2001: the scientific basis. Intergovernment panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Climate change 2007. Climate change impacts, adaptation and vulnerability. Working Group II. IPCC, Geneva

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms, 10th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Metzger P, Berkaloff C, Couté A, Casadevall E (1985) Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312

    Article  CAS  Google Scholar 

  • Murray R, Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  Google Scholar 

  • Park MO, Heguri K, Hirata K, Miyamoto K (2005) Production of alternatives to fuel oil from organic waste by the alkane-producing bacterium, Vibrio furnissii M1. J Appl Microbiol 98:324–331

    Article  CAS  Google Scholar 

  • Peña KL, Castel SE, Araujo C, Espie GS, Kimber MS (2010) Structural basis of the oxidative activation of the carboxysomal γ-carbonic anhydrase, CcmM. PNAS 107(6):2455–2460

    Article  Google Scholar 

  • Pichard SL, Campbell L, Paul JH (1997) Diversity of the Ribulose Bisphosphate carboxylase/oxygenase form I gene (rbcL) in natural phytoplankton communities. Appl Environ Microbiol 63:3600–3606

    Article  CAS  Google Scholar 

  • Ragsdale SW (2008) Enzymology of the wood-Ljungdahl pathway of acetogenesis 2008 Ann N Y Acad Sci 1125:129–36

    Google Scholar 

  • Ramanan R, Kannan K, Sivanesan SD, Mudliar S, Kaur S, Tripathi AK, Chakrabarti T (2009) Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World J Microbiol Biotechnol 25:981–987

    Google Scholar 

  • Rivadeneyra MA, Ramos-Cormenzana A, Delgado G, Delgado R (1996) Process of carbonate precipitation by Deleya halophila. Curr Microbiol 32:308–313

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Delgado G, Ramos CA, Delgado R (1998) Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbial 149:227–287

    Google Scholar 

  • Schlesinger W (1999) Carbon Sequestration in Soils Science 284(5423):2095–2095

    Google Scholar 

  • Scott KM, Henn-Sax M, Harmer TL, Longo DL, Frame CH, Cavanaugh CM (2007) Kinetic isotope effect and biochemical characterization of form IA RubisCO from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnol Oceanogr 5(5):2199–2204

    Google Scholar 

  • Strauss G, Fuchs G (1993) Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Eur J Biochem 215:633–643

    Article  CAS  Google Scholar 

  • Tabita FR, Hanson TE, Satagopan S, Singh J, Chan S (2007) Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 71:576–599

    Article  CAS  Google Scholar 

  • Tabita FR, Hanson TE, Satagopan S, Witte BH, Kreel NE (2008) Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos Trans R Soc Lond Ser B Biol Sci 363:2629–2640

    Article  CAS  Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  CAS  Google Scholar 

  • Vapaavuori EM (1986) Correlation of activity and amount of ribulose 1,5-bisphosphate carboxylase with chloroplast stroma crystals in water-stressed willow leaves. J Exp Bot 37:189–198

    Article  Google Scholar 

  • Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shivel JM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the School of Environmental Sciences, Jawaharlal Nehru University, New Delhi,India, Amity School of Earth and Environmental Sciences, Amity University Haryana, Gurugram, India and University School of Environmental Management (Guru Gobind Singh Indraprastha University) for their kind support. One of the author (Randhir K. Bharti) is thankful to D.S Kothari Post-Doctoral Fellowship (BL/17-18/0164), UGC, Govt of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharti, R.K., Srivastava, S., Thakur, I.S. (2021). Sequestration of Carbon Dioxide by Microorganism and Production of Value Added Product. In: Singh, A., Srivastava, S., Rathore, D., Pant, D. (eds) Environmental Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7493-1_11

Download citation

Publish with us

Policies and ethics