Skip to main content

Application of Microbial Fuel Cell for Bioremediation of Sewage Sludge

  • Chapter
  • First Online:
Microbial Fuel Cell (MFC) Applications for Sludge Valorization

Part of the book series: Green Energy and Technology ((GREEN))

  • 125 Accesses

Abstract

This chapter provides a comprehensive overview of the potential application of microbial fuel cell (MFC) technology for the bioremediation of sewage sludge. The abundance of sewage sludge and its associated contaminants presents a significant challenge to environmental sustainability, necessitating the development of innovative approaches for its treatment. The implementation of MFC technology offers a promising alternative approach that can simultaneously provide bioremediation and power generation benefits. The chapter highlights current research and studies on the utilization of MFC for sewage sludge treatment, including an overview of the mechanisms involved in the adaptation of the technology to address environmental issues associated with sewage sludge pollution. The chapter also discusses parameters for enhancing MFC performance, such as the combination of inoculum, substrate pretreatment, sludge concentration, and the effect of nitrate and sulfate. The earliest applications of MFC technology for sludge treatment are also discussed, including the configuration of the system, the use of sludge as a substrate, and the adjustment of pH to suit the system. Early MFC research also focused on nutrient recovery. Overall, the chapter aims to provide a comprehensive understanding of the potential contribution of MFC technology to sustainable wastewater management. By utilizing MFC technology for the bioremediation of sewage sludge, researchers can develop innovative solutions for addressing environmental challenges, thereby enhancing environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zsirai I (2011) Sewage sludge as renewable energy. J Residuals Sci Technol 8(4):165–179. https://doi.org/10.13140/RG.2.1.1939.0483

    Article  CAS  Google Scholar 

  2. Grobelak A, Czerwińska K, Murtaś A (2019) General considerations on sludge disposal, industrial and municipal sludge. In: Industrial and municipal sludge: emerging concerns and scope for resource recovery. Butterworth-Heinemann, Oxford, pp 135–153. https://doi.org/10.1016/B978-0-12-815907-1.00007-6

  3. Kacprzak M et al (2017) Sewage sludge disposal strategies for sustainable development. Environ Res 156:39–46. https://doi.org/10.1016/j.envres.2017.03.010

    Article  CAS  Google Scholar 

  4. Guangyin Z, Youcai Z (2017) Sewage sludge generation and characteristics. In: Pollution control and resource recovery: sewage sludge. Butterworth-Heinemann, Oxford, pp 1–11. https://doi.org/10.1016/B978-0-12-811639-5.00001-2

  5. RPA, WRC, and milieu (2008) Environmental, economic and social impacts of the use of sewage sludge on land final report Part II: report on options and impacts, p 158

    Google Scholar 

  6. Rorat A, Courtois P, Vandenbulcke F, Lemiere S (2019) Sanitary and environmental aspects of sewage sludge management. In: Industrial and municipal sludge: emerging concerns and scope for resource recovery. Butterworth-Heinemann, Oxford, pp 155–180. https://doi.org/10.1016/B978-0-12-815907-1.00008-8

  7. Tyagi VK, Lo SL (2013) Sludge: a waste or renewable source for energy and resources recovery? Renew Sustain Energ Rev 25(71):708–728. https://doi.org/10.1016/j.rser.2013.05.029

    Article  CAS  Google Scholar 

  8. Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods—a review. Renew Sustain Energy Rev 12(1):116–140

    Article  CAS  Google Scholar 

  9. Samolada MC, Zabaniotou AA (2014) Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manage 34(2):411–420. https://doi.org/10.1016/J.WASMAN.2013.11.003

    Article  CAS  Google Scholar 

  10. Siebielska I (2014) Comparison of changes in selected polycyclic aromatic hydrocarbons concentrations during the composting and anaerobic digestion processes of municipal waste and sewage sludge mixtures. Water Sci Technol J Int Assoc Water Pollut Res 70(10):1617–1624. https://doi.org/10.2166/WST.2014.417

    Article  CAS  Google Scholar 

  11. Fijalkowski KL, Kacprzak MJ, Rorat A (2014) Occurrence changes of Escherichia coli (including O157:H7 serotype) in wastewater and sewage sludge by quantitation method of (EMA) real time—PCR. New pub: Balaban 52(19–21):3965–3972. https://doi.org/10.1080/19443994.2014.887499

    Article  CAS  Google Scholar 

  12. Kacprzak M, Stan´czyk E, Stan´czyk-Mazanek S, (2003) Changes in the structure of fungal communities of soil treated with sewage sludge. Biol Fertil Soils 38:89–95. https://doi.org/10.1007/s00374-003-0633-2

    Article  Google Scholar 

  13. Farzadkia M, Bazrafshan E (2014) Lime stabilization of waste activated sludge. Health Scope 3:1–5

    Article  Google Scholar 

  14. Olszewski JM, Lozano N, Haines C, Rice CP, Ramirez M, Torrents A (2013) The effect of liming on antibacterial and hormone levels in wastewater biosolids. J Environ Sci Health. Part A, Toxic/Hazard Subst Environ Eng 48(8):862–870. https://doi.org/10.1080/10934529.2013.761488

  15. Dong K (2020) How renewable energy consumption lower global CO2 emissions? evidence from countries with different income levels, vol 2017, pp 1665–1698. https://doi.org/10.1111/twec.12898.

  16. BP, “BP Statistical Review of World Energy 2020,” 2020

    Google Scholar 

  17. NACWA (2010) Renewable energy resources: banking on biosolids, p 23

    Google Scholar 

  18. Gude VG (2018) Wastewater treatment in microbial fuel cells—an overview. J Clean Prod 122:287–307. https://doi.org/10.1016/j.jclepro.2016.02.022

    Article  CAS  Google Scholar 

  19. Katuri KP, Scott K, Head IM, Picioreanu C, Curtis TP (2011) Microbial fuel cells meet with external resistance. Bioresour Technol 102(3):2758–2766. https://doi.org/10.1016/j.biortech.2010.10.147

    Article  CAS  Google Scholar 

  20. Andreoli CV, von Sperling M, Fernandes F (2007) Sludge treatment and disposal, vol 1, IWA Publishing. https://doi.org/10.2166/9781780402130

  21. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications: a review. J Power Sources 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  CAS  Google Scholar 

  22. Gajda I, Greenman J, Ieropoulos IA (2018) Recent advancements in real-world microbial fuel cell applications. Curr Opin Electrochem 11:78–83. https://doi.org/10.1016/j.coelec.2018.09.006

    Article  CAS  Google Scholar 

  23. Ho NAD, Babel S, Sombatmankhong K (2018) Bio-electrochemical system for recovery of silver coupled with power generation and wastewater treatment from silver (I) diammine complex. J Water Process Eng 23:186–194. https://doi.org/10.1016/j.jwpe.2018.04.001

    Article  Google Scholar 

  24. Fornero JJ, Rosenbaum M, Angenent T (2010) Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis 22(7–8):832–843. https://doi.org/10.1002/elan.200980011

    Article  CAS  Google Scholar 

  25. Omeroglu S, Sanin FD (2016) Bioelectricity generation from wastewater sludge using microbial fuel cells: a critical review. Clean Soil Air Water 44(9999):1–9. https://doi.org/10.1002/clen.201500829

    Article  CAS  Google Scholar 

  26. Ucar D, Zhang Y, Angelidaki I, Franks AE (2007) An overview of electron acceptors in microbial fuel cells. Front Microbiol 8:643. https://doi.org/10.3389/fmicb.2017.00643

    Article  Google Scholar 

  27. Logan BE (ed) (2008). Wiley, Hoboken, NJ

    Google Scholar 

  28. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. 25:464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004

    Article  CAS  Google Scholar 

  29. Ahn Y, Zhang F, Logan BE (2014) Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes. J Power Sour 247:655–659. https://doi.org/10.1016/j.jpowsour.2013.08.084

    Article  CAS  Google Scholar 

  30. Feng C, Huang L, Yu H, Yi X, Wei C (2015) Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology. Water Res 76:160–170. https://doi.org/10.1016/J.WATRES.2015.03.001

    Article  CAS  Google Scholar 

  31. Jiang J, Zhao Q, Zhang J, Zhang G, Lee D (2009) Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresour Technol 100(23):5808–5812. https://doi.org/10.1016/j.biortech.2009.06.076

    Article  CAS  Google Scholar 

  32. Logan BE, Wallack MJ, Kim K, He W, Feng Y, Saikaly PE (2015) Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett 2:206–214. https://doi.org/10.1021/acs.estlett.5b00180

    Article  CAS  Google Scholar 

  33. Fazal U et al (2021) Microbial fuel cell: study of bioresource potential of dairy effluent and Associated Process Limitations. Research Square, pp 1–17

    Google Scholar 

  34. Shamsudin NA, Sabri MNIM, Tajarudin HA, Mokhtar AMA, Makhtar MMZ (2022) The future promising alternative renewable energy from microbial fuel cell BT. In: Yaser AZ, Tajarudin HA, Embrandiri A (eds) Waste management, processing and valorisation. Springer, Singapore, pp 235–263. https://doi.org/10.1007/978-981-16-7653-6_13

  35. Seo Y, Kang H, Chang S, Lee Y, Cho K (2017) Toxic/hazardous substances and environmental engineering effects of nitrate and sulfate on the performance and bacterial community structure of membrane- less single-chamber air-cathode microbial fuel cells. J Environ Sci Health, Part A 53(1):13–24. https://doi.org/10.1080/10934529.2017.1366242

    Article  CAS  Google Scholar 

  36. Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water—a comprehensive review. Resource-efficient Technol 2(4):175–184. https://doi.org/10.1016/J.REFFIT.2016.09.004

    Article  Google Scholar 

  37. Vu HT, Min B (2019) Integration of submersible microbial fuel cell in anaerobic digestion for enhanced production of methane and current at varying glucose levels. Int J Hydrogen Energy 44(14):7574–7582. https://doi.org/10.1016/J.IJHYDENE.2019.01.091

    Article  CAS  Google Scholar 

  38. Wang Z, Mei X, Ma J, Wu Z (2012) Recent advances in microbial fuel cells integrated with sludge treatment. Chem Eng Technol 35(10):1733–1743. https://doi.org/10.1002/ceat.201200132

    Article  CAS  Google Scholar 

  39. Munoz-Cupa C, Hu Y, Xu C, Bassi A (2021) An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci Total Environ 754:142429. https://doi.org/10.1016/J.SCITOTENV.2020.142429

    Article  CAS  Google Scholar 

  40. Das S, Mangwani N (2010) Recent developments in microbial fuel cells. J Sci Ind Res 69:727–731

    CAS  Google Scholar 

  41. Abourached C, Lesnik KL, Liu H (2014) Enhanced power generation and energy conversion of sewage sludge by CEA—microbial fuel cells. Bioresour Technol 166:229–234. https://doi.org/10.1016/j.biortech.2014.05.027

    Article  CAS  Google Scholar 

  42. Ting CH, Lee DJ (2007) Production of hydrogen and methane from wastewater sludge using anaerobic fermentation. Int J Hydrogen Energy 32(6):677–682. https://doi.org/10.1016/J.IJHYDENE.2006.06.063

    Article  CAS  Google Scholar 

  43. Hu Z (2008) Electricity generation by a baffle-chamber membraneless microbial fuel cell. J Power Sour 179(1):27–33. https://doi.org/10.1016/j.jpowsour.2007.12.094

    Article  CAS  Google Scholar 

  44. Dentel SK, Strogen B, Chiu P (2004) Direct generation of electricity from sludges and other liquid wastes. Water Sci Technol 50(9):161–168. https://doi.org/10.2166/wst.2004.0561

    Article  CAS  Google Scholar 

  45. Liu Z et al (2009) Production of electricity from surplus sludge using a single chamber floating-cathode microbial fuel cell. Water Sci Technol 60(9):2399–2404. https://doi.org/10.2166/wst.2009.313

    Article  CAS  Google Scholar 

  46. Yuan Y, Chen Q, Zhou S, Zhuang L, Hu P (2011) Improved electricity production from sewage sludge under alkaline conditions in an insert-type air-cathode microbial fuel cell. J Chem Technol Biotechnol 87(1):80–86. https://doi.org/10.1002/jctb.2686

    Article  CAS  Google Scholar 

  47. Fischer F, Bastian C, Happe M, Mabillard E, Schmidt N (2011) Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresour Technol 102(10):5824–5830. https://doi.org/10.1016/j.biortech.2011.02.089

    Article  CAS  Google Scholar 

  48. Ge Z, Zhang F, Grimaud J, Hurst J, He Z (2013) Long-term investigation of microbial fuel cells treating primary sludge or digested sludge. Bioresour Technol 136:509–514. https://doi.org/10.1016/j.biortech.2013.03.016

    Article  CAS  Google Scholar 

  49. Nandy A, Sharma M, Venkatesan SV, Taylor N, Gieg L, Thangadurai V (2019) Comparative evaluation of coated and non-coated carbon electrodes in a microbial fuel cell for treatment of municipal sludge. Energies 12(6):1034. https://doi.org/10.3390/en12061034

    Article  CAS  Google Scholar 

  50. Mohd Zaini Makhtar M, Tajarudin HA, Samsudin MDM, Vadivelu VM, Shoparwe NF, ‘Izzah Zainuddin N (2021) Membrane-less microbial fuel cell: Monte Carlo simulation and sensitivity analysis for COD removal in dewatered sludge. AIP Adv 11(6):65016. https://doi.org/10.1063/5.0039014

    Article  CAS  Google Scholar 

  51. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017

    Article  CAS  Google Scholar 

  52. Liang P, Huang X, Fan MZ, Cao XX, Wang C (2007) Composition and distribution of internal resistance in three types of microbial fuel cells. Appl Microbiol Biotechnol 77(3):551–558. https://doi.org/10.1007/s00253-007-1193-4

    Article  CAS  Google Scholar 

  53. Liu Z, Liu J, Zhang S, Su Z (2009) Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon-and protein-rich substrates. Biochem Eng J 45(3):185–191. https://doi.org/10.1016/j.bej.2009.03.011

    Article  CAS  Google Scholar 

  54. Chabert N, Amin Ali O, Achouak W (2015) All ecosystems potentially host electrogenic bacteria. Bioelectrochem 106:88–96. https://doi.org/10.1016/j.bioelechem.2015.07.004

    Article  CAS  Google Scholar 

  55. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiol 14(12):512–518. https://doi.org/10.1016/j.tim.2006.10.003

    Article  CAS  Google Scholar 

  56. Wang H, Ren ZJ (2014) Bioelectrochemical metal recovery from wastewater: a review. Water Res 66:219–232. https://doi.org/10.1016/J.WATRES.2014.08.013

    Article  CAS  Google Scholar 

  57. Mathuriya AS, Yakhmi JV (2014) Microbial fuel cells to recover heavy metals. Environ Chem Lett 12(4):483–494. https://doi.org/10.1007/S10311-014-0474-2/FIGURES/3

    Article  CAS  Google Scholar 

  58. Li Z, Zhang X, Lei L (December 2008) Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochem 43(12):1352–1358. https://doi.org/10.1016/J.PROCBIO.2008.08.005

    Article  CAS  Google Scholar 

  59. Choi C, Cui Y (March 2012) Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Biores Technol 107:522–525. https://doi.org/10.1016/J.BIORTECH.2011.12.058

    Article  CAS  Google Scholar 

  60. Sun J, Hu Y, Bi Z, Cao Y (2009) Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J Power Sour 187(2):471–479. https://doi.org/10.1016/j.jpowsour.2008.11.022

    Article  CAS  Google Scholar 

  61. Baranitharan E et al (2015) Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell. Fuel 143:72–79. https://doi.org/10.1016/j.fuel.2014.11.030

    Article  CAS  Google Scholar 

  62. Xie B, Liu H, Yan Y (2009) Improvement of the activity of anaerobic sludge by low-intensity ultrasound. J Environ Manag. https://doi.org/10.1016/j.jenvman.2007.09.004

    Article  Google Scholar 

  63. Zhu H, Béland M (2006) Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrogen Energy 14(31):1980–1988. https://doi.org/10.1016/J.IJHYDENE.2006.01.019

    Article  Google Scholar 

  64. More TT, Ghangrekar MM (2010) Improving performance of microbial fuel cell with ultrasonication pre-treatment of mixed anaerobic inoculum sludge. Bioresour Technol 101(2):562–567. https://doi.org/10.1016/j.biortech.2009.08.045

    Article  CAS  Google Scholar 

  65. Khan MR, Amin MSA, Sarker S, Ferdaus K (2012) Design and fabrication of membrane less microbial fuel cell (ML-MFC) using food industries wastewater for power generation. J Chem Eng 27(2):55–59

    Article  Google Scholar 

  66. Amin MSA, Haque T, Tarannum R, Khan MR (2014) Wastewater treatment and electricity generation by membrane less microbial fuel. Int J Environ Eng 6(3):314. https://doi.org/10.1504/ijee.2014.064306

    Article  Google Scholar 

  67. Palanisamy G, Jung HY, Sadhasivam T, Kurkuri MD, Kim SC, Roh SH (2019) A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod 221:598–621. https://doi.org/10.1016/j.jclepro.2019.02.172

    Article  CAS  Google Scholar 

  68. Vavilin VA, Rytov SV, Lokshina LY (1996) A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour Technol 56(2–3):229–237. https://doi.org/10.1016/0960-8524(96)00034-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universiti Sains Malaysia for the financial support of this study via APEX Era grant (1001/PTEKIND/881004). The authors have declared no conflict of interest for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muaz Mohd Zaini Makhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamad Sobri, M.F., Mohd Zaini Makhtar, M. (2023). Application of Microbial Fuel Cell for Bioremediation of Sewage Sludge. In: Mohd Zaini Makhtar, M., Shukor, H., Yaser, A.Z. (eds) Microbial Fuel Cell (MFC) Applications for Sludge Valorization. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1083-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1083-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1082-3

  • Online ISBN: 978-981-99-1083-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics