Skip to main content

Microbial Fuel Cell Technology as Advanced Sewage Sludge Treatment

  • Chapter
  • First Online:
Microbial Fuel Cell (MFC) Applications for Sludge Valorization

Abstract

The microbial fuel cell (MFC) has emerged as an innovative and sustainable renewable energy technology, offering a potential alternative to address the global energy crisis. Operating through electrochemical processes, MFCs harness the power of electrogenic bacteria (EB) as biocatalysts to generate electricity. This chapter highlights the untapped potential of sewage sludge, derived from wastewater treatment, as a valuable fuel source within the MFC system. Extensive research has demonstrated the abundance of organic components present in sewage sludge, making it highly amenable to degradation through microbiological pathways within the MFC. Despite the lack of large-scale commercial utilization of MFC technology in wastewater treatment plants, the significant progress and promising findings indicate its effectiveness in addressing the challenges associated with sewage sludge management. The MFC system not only facilitates the simultaneous generation of energy but also contributes to bioremediation efforts. The redox potential inherent in MFCs enables this dual functionality, effectively integrating energy production with the treatment of sewage sludge. This chapter sheds light on the potential of MFC technology as an advanced approach for sewage sludge treatment. By harnessing the capabilities of electrogenic bacteria and capitalizing on the rich organic composition of sewage sludge, MFCs offer a sustainable solution that can simultaneously address energy needs and promote efficient waste management in wastewater treatment plants. The abundant and promising data accumulated thus far underscore the viability and potential of MFCs in mitigating the challenges associated with sewage sludge waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. To VHP, Nguyen TV, Vigneswaran S, Ngo HH (2016) A review on sludge dewatering indices. Water Sci Technol 74(1):1–16. https://doi.org/10.2166/wst.2016.102

    Article  CAS  Google Scholar 

  2. Hanum F et al. (2019) Treatment of sewage sludge using anaerobic digestion in Malaysia: current state and challenges. Front Energy Res 7(MAR):1–7. https://doi.org/10.3389/fenrg.2019.00019

  3. Kasina M, Kowalski PR, Michalik M (2016) Metals accumulation during thermal processing of sewage sludge—characterization of fly ash and Air Pollution Control (APC) residues. Energy Procedia 97:23–30. https://doi.org/10.1016/j.egypro.2016.10.012

    Article  CAS  Google Scholar 

  4. Indah Water Konsortium (2013) Indah water cleaning the unseen

    Google Scholar 

  5. Wu B, Dai X, Chai X (2020) Critical review on dewatering of sewage sludge: influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Res 180:115912. https://doi.org/10.1016/j.watres.2020.115912

    Article  CAS  Google Scholar 

  6. Duan N, Dong B, Wu B, Dai X (2012) High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Biores Technol 104:150–156. https://doi.org/10.1016/j.biortech.2011.10.090

    Article  CAS  Google Scholar 

  7. Dai X, Duan N, Dong B, Dai L (2013) High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance. Waste Manage 33(2):308–316. https://doi.org/10.1016/j.wasman.2012.10.018

    Article  CAS  Google Scholar 

  8. Tian K, Liu W-J, Qian T-T, Jiang H, Yu H-Q (Sep.2014) Investigation on the evolution of n-containing organic compounds during pyrolysis of sewage sludge. Environ Sci Technol 48(18):10888–10896. https://doi.org/10.1021/es5022137

    Article  CAS  Google Scholar 

  9. Zhao M, Wang F, Fan Y, Raheem A, Zhou H (2019) Low-temperature alkaline pyrolysis of sewage sludge for enhanced H2 production with in-situ carbon capture. Int J Hydrogen Energy 44(16):8020–8027. https://doi.org/10.1016/j.ijhydene.2019.02.040

    Article  CAS  Google Scholar 

  10. Yu G, Chen D, Arena U, Huang Z, Dai X (2018) Reforming sewage sludge pyrolysis volatile with Fe-embedded char: minimization of liquid product yield. Waste Manage 73:464–475. https://doi.org/10.1016/j.wasman.2017.08.004

    Article  CAS  Google Scholar 

  11. Baru PA, Hassan S (2018) Akademia Baru characterization of Malaysian sewage sludge dried using thermal dryer. J Adv Res Fluid Mech Therm Sci 5(January):24–29

    Google Scholar 

  12. Tambo N, Kobayashi M, Thebault P, Haubry A (1982) Sludge treatment and disposal. Water Supply 1(2/3). https://doi.org/10.1142/9781848160798_0015

  13. Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N (2014) Bioresource Technology: a review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Biores Technol 155:289–299. https://doi.org/10.1016/j.biortech.2013.12.066

    Article  CAS  Google Scholar 

  14. Technical EEA (2020) Horizon 2020 Mediterranean report, no. 6

    Google Scholar 

  15. Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions—a review. Biores Technol 100(16):3792–3798. https://doi.org/10.1016/j.biortech.2008.12.006

    Article  CAS  Google Scholar 

  16. Mancini G, Luciano A, Bolzonella D, Fatone F, Viotti P, Fino D (2021) A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions. Renew Sustain Energy Rev 137(October 2020):110441. https://doi.org/10.1016/j.rser.2020.110441

  17. Oladejo J, Shi K, Luo X, Yang G, Wu T (2019) A review of sludge-to-energy recovery methods. Energies 12(1):1–38. https://doi.org/10.3390/en12010060

    Article  CAS  Google Scholar 

  18. Sharma M, Singh J, Baskar C, Kumar A (2018) A comprehensive review on biochar formation and its utilization for wastewater treatment. Pollut Res 37:1–18

    Google Scholar 

  19. Varjani S, Kumar G, Rene ER (2019) Developments in biochar application for pesticide remediation: current knowledge and future research directions. J Environ Manage 232:505–513. https://doi.org/10.1016/j.jenvman.2018.11.043

    Article  CAS  Google Scholar 

  20. Bora AP, Gupta DP, Durbha KS (2020) Sewage sludge to bio-fuel: a review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel 259:116262. https://doi.org/10.1016/j.fuel.2019.116262

    Article  CAS  Google Scholar 

  21. Vijayaraghavan K (Jan 2019) Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environ Tech Rev 8(1):47–64. https://doi.org/10.1080/21622515.2019.1631393

    Article  CAS  Google Scholar 

  22. Agegnehu G, Srivastava AK, Bird MI (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol 119:156–170. https://doi.org/10.1016/j.apsoil.2017.06.008

    Article  Google Scholar 

  23. Gubišová M et al (2020) Sewage sludge as a soil amendment for growing biomass plant Arundo donax L. Agronomy 10(5). https://doi.org/10.3390/agronomy10050678

  24. Potter MC, Waller AD (Sep 1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London Ser B, Contain Pap Biol Character 84(571):260–276. https://doi.org/10.1098/rspb.1911.0073

  25. Shamsuddin NA, Mohd Sabri MNI, Tajarudin HA, Shoparwe NF, Makhtar MMZ (May 2021) Effect of thermal pre-treatments method on sludge degradation process prior usage in membrane-less microbial fuel cell for electricity generation. IOP Conf Ser Earth Environ Sci 76(1):012092. https://doi.org/10.1088/1755-1315/765/1/012092

  26. Khoo KS, Chia WY, Tang DYY, Show PL, Chew KW, Chen WH (2020) Nanomaterials utilization in biomass for biofuel and bioenergy production. Energies 13(4):1–20. https://doi.org/10.3390/en13040892

    Article  CAS  Google Scholar 

  27. Tamboli E, Eswari JS (2019) Chapter 3.2—microbial fuel cell configurations: an overview. Elsevier B.V. https://doi.org/10.1016/B978-0-444-64052-9.00016-9

  28. Piccolino M (Jul 1998) Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani. Brain Res Bull 46(5):381–407. https://doi.org/10.1016/s0361-9230(98)00026-4

    Article  CAS  Google Scholar 

  29. Bennetto HP, Stirling JL, Tanaka K, Vega CA (Feb1983) Anodic reactions in microbial fuel cells. Biotechnol Bioeng 25(2):559–568. https://doi.org/10.1002/bit.260250219

    Article  CAS  Google Scholar 

  30. Rezaei F, Richard TL, Logan BE (2008) Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol Bioeng 101(6):1163–1169. https://doi.org/10.1002/bit.22015

    Article  CAS  Google Scholar 

  31. Khera J, Chandra A (2012) Microbial fuel cells: recent trends. Proc Natl Acad Sci India Sect A Phys Sci 82(1):31–41. https://doi.org/10.1007/s40010-012-0003-2

    Article  CAS  Google Scholar 

  32. Logan BE (2012) Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. Chemsuschem 5(6):988–994. https://doi.org/10.1002/cssc.201100604

    Article  CAS  Google Scholar 

  33. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (May 2006) Biofuel cells and their development. Biosens Bioelectron 21(11):2015–2045. https://doi.org/10.1016/j.bios.2006.01.030

    Article  CAS  Google Scholar 

  34. Shukla A, Suresh P, Berchmans S, Rajendran A (Aug 2004) Biological fuel cells and their applications. Curr Sci 87

    Google Scholar 

  35. Roller SD, Bennetto HP, Delaney GM, Mason JR, Stirling JL, Thurston CF (Mar 1984) Electron-transfer coupling in microbial fuel cells: 1. comparison of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol. Biotechnol 34(1):3–12. https://doi.org/10.1002/jctb.280340103

  36. Wilkinson S (2000) ‘Gastrobots’—benefits and challenges of microbial fuel cells in food powered robot applications. Auton Robot 9(2):99–111. https://doi.org/10.1023/A:1008984516499

    Article  Google Scholar 

  37. Ieropoulos I, Melhuish C, Greenman J (2003) Artificial metabolism: towards true energetic autonomy in artificial life. Adv Artif Life: 792–799

    Google Scholar 

  38. Mohd Zaini Makhtar M, Tajarudin HA, Samsudin MDM, Vadivelu VM, Shoparwe NF, Izzah Zainuddin N (Jun 2021). Membrane-less microbial fuel cell: Monte Carlo simulation and sensitivity analysis for COD removal in dewatered sludge. AIP Adv 11(6):65016. https://doi.org/10.1063/5.0039014

  39. Logan BE et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192. https://doi.org/10.1021/es0605016

    Article  CAS  Google Scholar 

  40. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells ( MFCs ) for sustainable energy production. Bioresour Technol 101(6):1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017

    Article  CAS  Google Scholar 

  41. Pham TH et al (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6(3):285–292. https://doi.org/10.1002/elsc.200620121

    Article  CAS  Google Scholar 

  42. Li M et al (2018) Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnol Adv 36(4):1316–1327. https://doi.org/10.1016/j.biotechadv.2018.04.010

    Article  CAS  Google Scholar 

  43. Debabrata D (2018) Microbial fuel cell: a bioelectrochemical system that converts waste to watts. Springer International, Switzerland

    Google Scholar 

  44. Akiba T, Bennetto HP, Stirling JL, Tanaka K (1987) Electricity production from alkalophilic organisms. Biotech Lett 9(9):611–616. https://doi.org/10.1007/BF01033196

    Article  CAS  Google Scholar 

  45. Chabert N, Amin Ali O, Achouak W (2015) All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry 106:88–96. https://doi.org/10.1016/j.bioelechem.2015.07.004

  46. Danish M et al (2021) Science of the total environment integrated air cathode microbial fuel cell-aerobic bioreactor set-up for enhanced bioelectrodegradation of azo dye Acid Blue 29. Sci Total Environ 756:0–10. https://doi.org/10.1016/j.scitotenv.2020.143752

  47. Pous N, Koch C, Colprim J, Puig S, Harnisch F (2014) Extracellular electron transfer of biocathodes: revealing the potentials for nitrate and nitrite reduction of denitrifying microbiomes dominated by Thiobacillus sp. Electrochem Commun 49:93–97. https://doi.org/10.1016/j.elecom.2014.10.011

    Article  CAS  Google Scholar 

  48. Guang L, Koomson DA, Jingyu H, Ewusi-Mensah D, Miwornunyuie N (2020) Performance of exoelectrogenic bacteria used in microbial desalination cell technology. Int J Environ Res Public Health 17(3):10–12. https://doi.org/10.3390/ijerph17031121

    Article  CAS  Google Scholar 

  49. Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (Jun.2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42(11):4146–4151. https://doi.org/10.1021/es800312v

    Article  CAS  Google Scholar 

  50. Martínez ÁT et al (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8(3):195–204. https://doi.org/10.2436/im.v8i3.9526

    Article  Google Scholar 

  51. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22(1):161–187. https://doi.org/10.1016/j.biotechadv.2003.08.011

    Article  CAS  Google Scholar 

  52. Wilkinson S, Klar J, Applegarth S (Oct 2006) Optimizing biofuel cell performance using a targeted mixed mediator combination. Electroanalysis 18(19–20):2001–2007. https://doi.org/10.1002/elan.200603621

    Article  CAS  Google Scholar 

  53. Sivasankar V, Mylsamy P, Omine K (2018) Microbial fuel cell technology for bioelectricity. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-92904-0

  54. Lee Y-K (Nov 2003) Algal nutrition—heterotrophic carbon nutrition. Handb Microalgal Cult :116–124. https://doi.org/10.1002/9780470995280.ch7

  55. Kruzic AP, Kreissl JF (May2009) Natural treatment and onsite systems. Water Environ Res 81(10):1346–1360

    Article  CAS  Google Scholar 

  56. Juang DF, Lee CH, Hsueh SC (2012) Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode. Biores Technol 123:23–29. https://doi.org/10.1016/j.biortech.2012.07.041

    Article  CAS  Google Scholar 

  57. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105(10):3968–3973. https://doi.org/10.1073/pnas.0710525105

    Article  CAS  Google Scholar 

  58. Konovalova EY et al (May 2018) The microorganisms used for working in microbial fuel cells. In: AIP Conference Proceedings, vol 1952. https://doi.org/10.1063/1.5031979

  59. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375–381. https://doi.org/10.1038/nrmicro2113

    Article  CAS  Google Scholar 

  60. Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619–2629. https://doi.org/10.1039/b703627m

    Article  CAS  Google Scholar 

  61. Feng C et al. (2014) Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS One 9(11). https://doi.org/10.1371/journal.pone.0113379

  62. Wu Y et al (2020) Enhanced current production by exogenous electron mediators via synergy of promoting biofilm formation and the electron shuttling process. Environ Sci Technol 54(12):7217–7225. https://doi.org/10.1021/acs.est.0c00141

    Article  CAS  Google Scholar 

  63. Miriam R, Federico Aulenta, Marianna V, Largus T Angenent (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102(1):324–333, ISSN 0960-8524. https://doi.org/10.1016/j.biortech.2010.07.008

  64. Bond D, Lovley D (2003) Electricity production by geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555. https://doi.org/10.1128/AEM.69.3.1548

  65. Ieropoulos IA, Greenman J, Melhuish C, Hart J (2005) Comparative study of three types of microbial fuel cell. Enzyme Microb Technol 37(2):238–245. https://doi.org/10.1016/j.enzmictec.2005.03.006

    Article  CAS  Google Scholar 

  66. Kumari S (2012) Studies on marine microbial fuel cell, Doctoral dissertation

    Google Scholar 

  67. Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104(10):4867–4886. https://doi.org/10.1021/cr020719k

    Article  CAS  Google Scholar 

  68. Zhao F, Slade RCT, Varcoe JR (2009) Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 38(7):1926–1939. https://doi.org/10.1039/b819866g

    Article  CAS  Google Scholar 

  69. Sirinutsomboon B (2014) Modeling of a membraneless single-chamber microbial fuel cell with molasses as an energy source. Int J Energy Environ Eng 5(2–3):1–9. https://doi.org/10.1007/s40095-014-0093-5

    Article  CAS  Google Scholar 

  70. Roy S, Marzorati S, Schievano A, Pant D (2017) Microbial fuel cells, vol 3. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10122-8

  71. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518. https://doi.org/10.1016/j.tim.2006.10.003

    Article  CAS  Google Scholar 

  72. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004

  73. Parkash A (2016 July) Microbial fuel cells: a source of bioenergy. Microbial and Biochemical Technology (July). https://doi.org/10.4172/1948-5948.1000293

  74. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262–5267. https://doi.org/10.1021/es0502876

    Article  CAS  Google Scholar 

  75. Feng C, Tsai C-C, Ma C-Y, Yu C-P, Hou C-H (2017) Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chem Eng J 330:1–10. https://doi.org/10.1016/j.cej.2017.07.122

    Article  CAS  Google Scholar 

  76. Feng Y, He W, Liu J, Wang X, Qu Y, Ren N (2014) A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Biores Technol 156:132–138. https://doi.org/10.1016/j.biortech.2013.12.104

    Article  CAS  Google Scholar 

  77. Santoro C et al. (2018 Feb) Ceramic microbial fuel cells stack: power generation in standard and supercapacitive mode. Sci Rep 8. https://doi.org/10.1038/s41598-018-21404-y

  78. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814. https://doi.org/10.1021/es0491026

    Article  CAS  Google Scholar 

  79. Helder M, Strik DP, Hamelers HVM, Buisman CJN (2012) The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnol Biofuels 5(1):70. https://doi.org/10.1186/1754-6834-5-70

    Article  CAS  Google Scholar 

  80. Ding HH, Chang S, Liu Y (Nov 2017) Biological hydrolysis pretreatment on secondary sludge: enhancement of anaerobic digestion and mechanism study. Biores Technol 244(Pt 1):989–995. https://doi.org/10.1016/j.biortech.2017.08.064

    Article  CAS  Google Scholar 

  81. Calderone L (2019) What is the future of non-renewable resources? Other Energy Topics.

    Google Scholar 

  82. Kumar A, Ogita S, Yau YY (2018) Biofuels: greenhouse gas mitigation and global warming. Springer, India. https://doi.org/10.1007/978-81-322-3763-1

  83. IPCC (2014) Climate change 2014, mitigation of climate change. In: Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK

    Google Scholar 

  84. IPCC (2014) Climate change. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva

    Google Scholar 

  85. Kan S, Chen B, Chen G (2019) Worldwide energy use across global supply chains: Decoupled from economic growth? Appl Energy 250:1235–1245. https://doi.org/10.1016/j.apenergy.2019.05.104

    Article  Google Scholar 

  86. Ahmad T, Zhang D (2020) A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep 6:1973–1991. https://doi.org/10.1016/j.egyr.2020.07.020

    Article  Google Scholar 

  87. Robert R (2020) Fossil fuels still supply 84 % of world energy—and other eye openers from BP’s annual review

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universiti Sains Malaysia for the financial support of this study via APEX Era grant (1001/PTEKIND/881004) The authors have declared no conflict of interest for the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohd Sabri, M.N.I., Mohd Abdul Rasik, N.A., Pusphanathan, K., Mohd Zaini Makhtar, M., Shukor, H. (2023). Microbial Fuel Cell Technology as Advanced Sewage Sludge Treatment. In: Mohd Zaini Makhtar, M., Shukor, H., Yaser, A.Z. (eds) Microbial Fuel Cell (MFC) Applications for Sludge Valorization. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1083-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1083-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1082-3

  • Online ISBN: 978-981-99-1083-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics