Skip to main content
Log in

Deactivation of isoamylase and β-amylase in the agitated reactor under supercritical carbon dioxide

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The current research examines the impact of agitation on deactivation of isoamylase and β-amylase under supercritical carbon dioxide (SC-CO2). Our experimental results showed that the activity of either enzyme decreased with increasing pressure or speed of agitation. The degree of enzymatic deactivation caused by pressure became more prominent in the presence of agitation, suggesting that the agitation plays an important role in enzymatic deactivation in SC-CO2 environment. Moreover, the enzymatic deactivation behavior associated with agitation and pressure was further quantitatively analyzed using a proposed inactivation kinetic model. Our analysis indicated that isoamylase and β-amylase exhibited significantly different relationships between the inverse of percentage residual activity and the product of number of revolution per time and time elapsed under pressurized carbon dioxide. We believe that the outcome from this work may provide a better understanding of the effects of agitation and pressure in enzyme deactivation behavior under SC-CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Canelas DA, DeSimone JM (1997) Polymerizations in liquid and supercritical carbon dioxide. Adv Polym Sci 133:103–140

    Article  CAS  Google Scholar 

  2. Savage PE, Gopalan S, Mizan TI, Martino CJ, Brock EE (1995) Reactions at supercritical conditions—applications and fundamentals. AIChE J 41:1723–1778

    Article  CAS  Google Scholar 

  3. Hu XB, Lesser AJ (2006) Solid-state processing of polymer in the presence of supercritical carbon dioxide. J Cell Plast 42:517–527

    Article  CAS  Google Scholar 

  4. Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43

    Article  CAS  Google Scholar 

  5. Oliveira JV, Pinto JC, Dariva C (2005) Application of a modified RESS process for polypropylene microparticle production. Fluid Phase Equilib 228:381–388

    Article  Google Scholar 

  6. Suttiruengwong S, Rolker J, Smirnova I, Arlt W, Seiler M, Luderitz L, de Diego YP, Jansens PJ (2006) Hyperbranched polymers as drug carriers: microencapsulation and release kinetics. Pharm Dev Technol 11:55–70

    Article  CAS  Google Scholar 

  7. Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JAE (2006) Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27:905–916

    Article  CAS  Google Scholar 

  8. Montjovent MO, Mathieu L, Hinz B, Applegate LL, Bourban PE, Zambelli PY, Manson JA, Pioletti DP (2005) Biocompatibility of bioresorbable poly(l-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng 11:1640–1649

    Article  CAS  Google Scholar 

  9. Reverchon E, Antonacci A (2006) Cyclodextrins micrometric powders obtained by supercritical fluid processing. Biotechnol Bioeng 94:753–761

    Article  CAS  Google Scholar 

  10. Kirschning A, Solodenko W, Mennecke K (2006) Combining enabling techniques in organic synthesis: continuous flow processes with heterogenized catalysts. Chem Eur J 12:5972–5990

    Article  CAS  Google Scholar 

  11. Nakamura K, Chi YM, Yamada Y, Yano T (1986) Lipase activity and stability in supercritical carbon dioxide. Chem Eng Commun 45:207

    Article  CAS  Google Scholar 

  12. Randolph TW, Blanch HW, Prausnitz JM, Wilke CR (1985) Enzymatic catalysis in a supercritical fluid. Biotechnol Lett 7:325

    Article  CAS  Google Scholar 

  13. Bauer C, Gamse T, Marr R (2001) Quality improvement of crude porcine pancreatic lipase preparations by treatment with humid supercritical carbon dioxide. Biochem Eng J 9:119–123

    Article  CAS  Google Scholar 

  14. Tai CY, Huang SC, Huang MS, Liu HS (2001) Hydrolysis of amylopectin by isoamylase under supercritical carbon dioxide. J Chin Inst Chem Eng 32:269–275

    CAS  Google Scholar 

  15. Rezaei K, Temelli F, Jenab E (2007) Effects of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25:272–280

    Article  CAS  Google Scholar 

  16. Liu HL, Hsieh WC, Liu HS (2004) Molecular dynamics simulations to determine the effect of supercritical carbon dioxide on the structural integrity of hen egg white lysozyme. Biotechnol Prog 20:930–938

    Article  CAS  Google Scholar 

  17. Trzesniak D, Lins RD, van Gunsteren WF (2006) Protein under pressure: molecular dynamics simulation of the arc repressor. Proteins Struct Funct Bioinform 65:136–144

    Article  CAS  Google Scholar 

  18. Paschek D, Gnanakaran S, Garcia AE (2005) Simulations of the pressure and temperature unfolding of an alpha-helical peptide. Proc Natl Acad Sci USA 102:6765–6770

    Article  CAS  Google Scholar 

  19. Striolo A, Favaro A, Elvassore N, Bertucco A, Di Noto V (2003) Evidence of conformational changes for protein films exposed to high-pressure CO2 by FT-IR spectroscopy. J Supercrit Fluids 27:283–295

    Article  CAS  Google Scholar 

  20. Allen WG, Dawson HG (1975) Technology and uses of debranching enzymes. Food Technol 29:70

    CAS  Google Scholar 

  21. Miyake H, Otsuka C, Nishimura S, Nitta Y (2002) Catalytic mechanism of beta-amylase from Bacillus cereus var. mycoides: chemical rescue of hydrolytic activity for a catalytic site mutant (Glu367→Ala) by azide. J Biochem 131:587–591

    CAS  Google Scholar 

  22. Wimmer Z, Zarevucka M (2010) A review on the effects of supercritical carbon dioxide on enzyme activity. Int J Mol Sci 11:233–253

    Article  CAS  Google Scholar 

  23. Lee HS, Lee WG, Park SW, Lee H, Chang HN (1993) Starch hydrolysis using enzyme in supercritical carbon-dioxide. Biotechnol Tech 7:267–270

    Article  CAS  Google Scholar 

  24. Harada T, Yokobayashi K, Misaki A (1968) Formation of isoamylase by Pseudomonas. Appl Microbiol 16:1439–1444

    CAS  Google Scholar 

  25. Bernfeld P (1955) Amylases alpha and beta. Methods Enzymol 1:149

    Article  CAS  Google Scholar 

  26. Ganesh K, Joshi JB, Sawant SB (2000) Cellulase deactivation in a stirred reactor. Biochem Eng J 4:137–141

    Article  CAS  Google Scholar 

  27. Mohanty M, Ghadge RS, Patil NS, Sawant SB, Joshi JB, Deshpande AV (2001) Deactivation of lipase at gas–liquid interface in stirred vessel. Chem Eng Sci 56:3401–3408

    Article  CAS  Google Scholar 

  28. Ghadge RS, Sawant SB, Joshi JB (2003) Enzyme deactivation in a bubble column, a stirred vessel and an inclined plane. Chem Eng Sci 58:5125–5134

    Article  CAS  Google Scholar 

  29. Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev 107:2786–2820

    Article  CAS  Google Scholar 

  30. Lencki RW, Tecante A, Choplin L (1993) Effect of shear on the inactivation kinetics of the enzyme dextransucrase. Biotechnol Bioeng 42:1061–1067

    Article  CAS  Google Scholar 

  31. Lencki RW, Arul J, Neufeld RJ (1992) Effect of subunit dissociation, denaturation, aggregation, coagulation, and decomposition on enzyme inactivation kinetics. II. Biphasic and grace period behavior. Biotechnol Bioeng 40:1427–1434

    Article  CAS  Google Scholar 

  32. Lencki RW, Arul J, Neufeld RJ (1992) Effect of subunit dissociation, denaturation, aggregation, coagulation, and decomposition on enzyme inactivation kinetics. I. First-order behaviour. Biotechnol Bioeng 40:1421–1426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwai-Shen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S.SS., Lai, JT., Huang, MS. et al. Deactivation of isoamylase and β-amylase in the agitated reactor under supercritical carbon dioxide. Bioprocess Biosyst Eng 33, 1007–1015 (2010). https://doi.org/10.1007/s00449-010-0425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0425-7

Keywords

Navigation