Skip to main content
Log in

Oxygen transfer in intensive microbial culture

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Oxygen transfer performances in intensive microbial cultures are compared with those occuring in coalescing and non-coalescing mineral media. E. coli fed-batch cultures are carried out in a 22 L bioreactor. Biomass concentrations of 80 gDW L−1 are reached, with oxygen consumption rates of up to 0.6 mol L−1 h−1. To achieve these high transfer performances, dissipated power e reaches 35 kW m−3. The hold-up in the culture broth and in the corresponding supernatant matches the non-coalescing mineral medium. Oxygen transfer coefficients, K L a in mineral media, and K T in the culture broth, are compared. K T, calculated online from a gas balance method, excesses 1 s−1. Yet, for given values of e, K T is 4–8 times lower than K L a determined in the non-coalescing mineral medium. The cell activity modifies the chemical medium properties and reduces the oxygen transfer conductance, as in a non-coalescing ionic medium containing surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

a :

interfacial area (dispersed interfacial area/V L) (m−1)

d 32 :

Sauter mean diameter (m)

dO2 :

dissolved oxygen, percentage of the saturation value

e :

volumetric dissipated power (W m−3)

E chem :

enhancement due to chemical modifications of the medium

E pp :

enhancement due to the physical presence of cells as solid particles

\({{E_{\rm qO}}_{2}}\) :

enhancement due to oxygen consumption

H :

Henry’s law constant (mol L−1 bar−1)

k L :

oxygen transfer conductance in the liquid phase (m s−1)

K L :

overall oxygen transfer conductance defined in the liquid phase (m s−1)

K L,b :

overall oxygen transfer conductance defined in the liquid phase in biological medium (m s−1)

K L a :

overall volumetric oxygen transfer coefficient defined in the liquid phase (s−1)

K T :

overall volumetric oxygen transfer coefficient defined in the liquid phase in biological complex systems, (s−1)

Q :

gas flow rate (L h−1)

\({q_{{\rm O}_{2}}}\) :

volumetric oxygen consumption rate (mol L−1 h−1)

R :

perfect gas constant

RQ :

respiratory quotient

T :

temperature (°K or °C)

Us :

superficial gas velocity (m s−1)

V c :

volume of the living cells (L)

V G :

dispersed gaseous volume (L)

V L :

liquid volume (including microorganisms) (L)

V L-c :

liquid volume excluding the volume of the cells (L)

X :

biomass concentration (gDW L−1)

x :

concentration in the liquid phase (mol L−1)

y :

concentration in the gaseous phase (mol L−1)

α, β, χ:

constants in Eq. 1

ɛ:

gas hold-up

σ:

surface tension (dyne cm−1)

τp :

time constant of the probe (s)

c :

in coalescing medium

lm :

logarithmic mean

N2 :

relative to nitrogen

nci :

in non-coalescing ionic medium

O2 :

relative to oxygen

* :

saturation value according to Henry’s law

in :

inlet of the reactor

out :

outlet of the reactor

References

  1. Aiba S, Humphrey AE, Millis NF (1973) Aeration and agitation. In Biochemical engineering, 2nd edn. Academic, New York, pp 163–194

  2. Ju L-K, Sundararajan A (1995) The effects of cells on oxygen transfer in bioreactors. Bioprocess Eng 13:271–278

    Article  CAS  Google Scholar 

  3. Ni X, Gao S, Cumming RH, Prichard DW (1995) A comparative study of mass transfer in yeast for a batch pulsed baffled bioreactor and a stirred tank fermenter. Chem Eng Sci 50:2127–2136

    Article  CAS  Google Scholar 

  4. Galaction A-I, Cascaval D, Oniscu C, Turnea M (2004) Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochem Eng J 20:85–94

    Article  CAS  Google Scholar 

  5. Garcia-Ochoa F, Gomez E (2005) Prediction of gas–liquid mass transfer coefficient in sparged stirred tank bioreactors. Biotechnol Bioeng 92:761–772

    Article  CAS  Google Scholar 

  6. Andrews GF, Fonta JP, Marrotta E, Stroeve P (1984) The effects of cells on oxygen transfer coefficients/II: analysis of enhancement mechanisms. Chem Eng J 29:B47–B55

    Article  CAS  Google Scholar 

  7. Merchuk JC (1977) Further considerations on the enhancement factor for oxygen absorption into fermentation broth. Biotechnol Bioeng 19:1885–1889

    Article  CAS  Google Scholar 

  8. Tsao GT, Mukerjee A, Lee YY (1972) Gas–liquid-cell oxygen absorption in fermentation. Proceedings of the IVth international fermentation symposium, fermentation technology today:65–71

  9. Boumansour B-E, Vasel J-L (1998) A new tracer gas method to measure oxygen transfer and enhancement factor on RBC. Water Res 32:1049–1058

    Article  CAS  Google Scholar 

  10. Yagi H, Yoshida F (1975) Enhancement factor for oxygen absorption into fermentation broth. Biotechnol Bioeng 17:1083–1098

    Article  CAS  Google Scholar 

  11. Bandyopadhyay B, Humphrey AE, Taguchi H (1967) Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol Bioeng 9:533–544

    Article  CAS  Google Scholar 

  12. Castan A, Näsman A, Enfors S-O (2002) Oxygen enriched air supply in Escherichia coli processes: production of biomass and recombinant human growth hormone. Enzyme and Microbial Technology 30:847–854

    Article  CAS  Google Scholar 

  13. Linek V, Vacek V, Beneš P (1987) A critical review and experimental verification of the correct use of the dynamic method for the determination of oxygen transfer in aerated agitated vessels to water, electrolyte solutions and viscous liquids. Chem Eng J 34:11–34

    Article  CAS  Google Scholar 

  14. Linek V, Beneš P, Vacek V (1989) Dynamic pressure method for kla measurement in large-scale bioreactors. Biotechnol Bioeng 33:1406–1412

    Article  CAS  Google Scholar 

  15. Poughon L, Duchez D, Cornet JF, Dussap CG (2003) K La determination: comparative study for a gas mass balance method. Bioprocess Biosyst Eng 25:341–348

    Article  CAS  Google Scholar 

  16. Lessard RR, Zieminski SA (1971) Bubble coalescence and gas transfer in aqueous electrolytic solutions. Ind Eng Chem Fundam 10:260–269

    Article  CAS  Google Scholar 

  17. Egli T, Fiechter A (1981) Theoretical analysis of media used in the growth of yeasts on methanol. J Gen Microbiol 124:365–369

    Google Scholar 

  18. Dang NDP, Karrer DA, Dunn IJ (1977) Oxygen transfer coefficients by dynamic model moment analysis. Biotech Bioeng 19:853–865

    Article  CAS  Google Scholar 

  19. Yee L, Blanch HW (1992) Recombinant trypsin production in high cell density fed-batch cultures in Escherichia coli. Biotechnol Bioeng 41:781–790

    Article  Google Scholar 

  20. Paalme T, Tiisma K, Kahru A, Vanatalu K, Vilu R (1990) Glucose-limited fed-batch cultivation of Escherichia coli with computer-controlled fixed growth rate. Biotechnol Bioeng 35:312–319

    Article  CAS  Google Scholar 

  21. Alfenore S, Molina-Jouve C, Guillouet SE, Uribelarrea J-L, Goma G, Benbadis L (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60:67–72

    Article  CAS  Google Scholar 

  22. Ruchti G, Dunn IJ, Bourne JR (1981) Comparison of dynamic oxygen electrode methods for the measurement of K L a. Biotechnol Bioeng 23:277–290

    Article  CAS  Google Scholar 

  23. Rainer BW (1990) Determination methods of the volumetric oxygen transfer coefficient k L a in bioreactors. Chem Biochem Eng 4:185–196

    CAS  Google Scholar 

  24. Badino Jr AC, Facciotti MCR, Schmidell W (2001) Volumetric oxygen transfer coefficient (k L a) in batch cultivations involving non-Newtonian broths. Biochem Eng J 8:111–119

    Article  CAS  Google Scholar 

  25. Wu L, Lange HC, van Gulik WM, Heijnen JJ (2003) Determination of in vivo oxygen uptake and carbon dioxide evolution rates from off-gas measurements under highly dynamic conditions. Biotechnol Bioeng 81:448–458

    Article  CAS  Google Scholar 

  26. van’t Riet K (1979) Review of measuring methods and results in nonviscous gas–liquid mass transfer in stirred vessels. Ind Eng Chem Process Des Development 18:357–364

    Article  CAS  Google Scholar 

  27. Kavanaugh MC, Trussell RR (1980) Design of aeration towers to strip volatile contaminants from drinking water. J Am Water Works Assoc 72:684–692

    CAS  Google Scholar 

  28. Weisenberger S, Schumpe A (1996) Estimation of gas solubilities in salt solutions at temperatures from 273 to 363 K. AIChE J 42:298–300

    Article  CAS  Google Scholar 

  29. Monbouquette HG (1987) Models for high cell density reactors must consider biomass volume fraction: cell recycle example. Biotechnol Bioeng 29:1075–1080

    Article  CAS  Google Scholar 

  30. Uribelarrea J-L, Pacaud S, Goma G (1985) New method for measuring the cell water content by thermogravimetry. Biotechnol Lett 7:75–80

    Article  Google Scholar 

  31. Linek V, Kordač M, Moucha T (2005) Mechanism of mass transfer from bubbles in dispersions: part II: mass transfer coefficients in stirred gas–liquid reactor and bubble column. Chem Eng Process 44:121–130

    Article  CAS  Google Scholar 

  32. Hughmark GA (1980) Power requirements and interfacial area in gas–liquid turbine agitated systems. Ind Eng Chem Process Des Dev 19:638–641

    Article  CAS  Google Scholar 

  33. Roustan M., Pharamond J-C, Liné A. (1997) Agitation mélange, concepts théoriques de base. In Techniques de l’Ingénieur, J3 800

  34. Keitel G, Onken U (1982) The effect of solutes on bubble size in air–water dispersions. Chem Eng Comm 17:85–98

    Article  CAS  Google Scholar 

  35. Takahashi K, McManamey J, Nienow AW (1992) Bubble size distributions in impeller region in a gas-sparged vessel agitated by a Rushton turbine. J Chem Eng Japan 25:427–432

    Article  CAS  Google Scholar 

  36. Robinson CW, Wilke CR (1973) Oxygen absorption in stirred tanks: a correlation for ionic strength effects. Biotechnol Bioeng 15:755–782

    Article  CAS  Google Scholar 

  37. Hassan ITM (1976) Mass transfer coefficients, interfacial area and bubble coalescence frequency in mechanically agitated gas–liquid dispersion. PhD thesis, University of Waterloo, 289 pp

  38. Veljković VB, Bicok KM, Simonović DM (1991) Mechanism, onset and intensity of surface aeration in geometrically-similar, sparged, agitated vessels. Canadian J Chem Eng 69:916–926

    Google Scholar 

  39. Wu H (1995) An issue on applications of a disk turbine for gas–liquid mass transfer. Chem Eng Sci 50:2801–2811

    Article  CAS  Google Scholar 

  40. Shioya S, Dunn IJ (1979) Model comparisons for dynamic k L a measurements with incompletely mixed phases. Chem Engng Commun 3:41–52

    Article  CAS  Google Scholar 

  41. Linek V, Kordač M, Fujasová M, Moucha T (2004) Gas–liquid mass transfer coefficient in stirred tanks interpreted through models of idealized eddy structure of turbulence in the bubble vicinity. Chem Eng Process 43:1511–1517

    Article  CAS  Google Scholar 

  42. Alves SS, Maia CI, Vasconcelos JMT, Serralheiro AJ (2002) Bubble size in aerated stirred tanks. Chem Eng J 89:109–117

    Article  CAS  Google Scholar 

  43. Bouaifi M, Roustan M (1998) Bubble size and mass transfer coefficients in dual-impeller agitated reactors. Canadian J Chem Eng 76:390–397

    Article  CAS  Google Scholar 

  44. Tsao GT (1970) Oxygen absorption in microbiological systems of zero order reaction rate. Biotechnol Bioeng 12:51–61

    Article  CAS  Google Scholar 

  45. Popovic M, Papalexiou A, Reuss M (1983) Gas residence time distribution in stirred tank bioreactors. Chem Eng Sci 38:2015–2025

    Article  CAS  Google Scholar 

  46. Alves SS, Maia CI, Vasconcelos JMT (2004) Gas–liquid mass transfer coefficient in stirred tanks interpreted through bubble contamination kinetics. Chem Eng Process 43:823–830

    Article  CAS  Google Scholar 

  47. Sardeing R, Painmanakul P, Hébrard G (2006) Effect of surfactants on liquid-side mass transfer coefficients in gas–liquid systems: a first step to modeling. Chem Eng Sci 61:6249–6260

    Article  CAS  Google Scholar 

  48. Llorens J, Mans C, Costa J (1988) Discrimination of the effects of surfactants in gas absorption. Chem Eng Sci 43:443–450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank JA de Hollander and WJ Beekman from DSM-Food Specialties for their advice, and DSM for having supported this work. We thank P Winterton for his careful rereading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Fyferling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fyferling, M., Uribelarrea, JL., Goma, G. et al. Oxygen transfer in intensive microbial culture. Bioprocess Biosyst Eng 31, 595–604 (2008). https://doi.org/10.1007/s00449-008-0208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0208-6

Key words

Navigation