Skip to main content
Log in

The effects of cells on oxygen transfer in bioreactors

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cells may affect oxygen transfer rates by three mechanisms: respiration of cells accumulated at the gas/liquid interface, physical presence of cells as solid particles, and modification of the medium by cells. These effects were studied experimentally in bubble-aerated bioreactors using baker's yeast at different cell concentrations, agitation speeds, aeration rates, and specific oxygen uptake rates. The overall effect of cells was to enhance oxygen transfer rates. The physical presence of cells as solid particles was found to retard oxygen transfer, presumably due to the lower oxygen permeability in the cell layer accumulated near the bubble surfaces. Cell respiration and medium modification, on the other hand, enhanced oxygen transfer rates. The retardation by nonrespiring cells and the enhancement due to cell respiration were found stronger at higher agitation speeds and lower aeration rates employed. This was attributed to the higher interfacial cell accumulation associated with the smaller bubbles produced under these conditions in the systems studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

dissolved oxygen concentration, kg/m3

c i :

dissolved oxygen concentration at the start of aeration, kg/m3

c :

equilibrium dissolved oxygen concentration, kg/m3

d b :

bubble diameter, m

d c :

cell diameter, m

k La:

volumetric oxygen transfer coefficient, s−1

OUR :

oxygen uptake rate, mol O2/m3-s

Re:

bubble Reynolds number, (=ρUd/μ)

t :

time, s

η :

cell interceptional collision efficiency

τ E :

time constant for the electrode, s

τ F :

time constant for the liquid film, s

τ G :

time constant due to gas hold-up, s

f :

filtered (cell-free) medium

o :

fresh medium

sa :

suspension of non-respiring cells achieved by addition of soidum azide

sp :

specific value

References

  1. Albertson, O.E.; DiGregorio, D.: Biologically mediated inconsistencies in aeration equipment performance. J. Water Pollut. Control Fed. 47 (1975) 976–988

    Google Scholar 

  2. Bennett, G.F.; Kempe, L.L.: Oxygen transfer mechanisms in the gluconic acid fermentation by Pseudomonas ovalis. Biotechnol. Bioeng. 6 (1964) 347–360

    Google Scholar 

  3. Lee, K.M.; Stensel, H.D.: An oxygen transfer and substrate utilization model for sparged fixed-film reactors. Paper presented at the 58th Annual Water Pollution Control Federation Conference, Oct. 6–9, 1985, Kansas City, MO

  4. Mines, R.O.; Sherrard, J.H.: Biological enhancement of oxygen transfer in the activated sludge process. J. Water Pollut. Control Fed. 62 (1987) 19–24

    Google Scholar 

  5. Reiber, S.; Stensel, H.D.: Biological enhanced oxygen transfer in a fixed film system. J. Water Pollut. Control Fed. 57 (1985) 135–142

    Google Scholar 

  6. Tsao, G.T.: Simultaneous gas-liquid interfacial mass transfer and biochemical oxidation. Biotechnol. Bioeng. 10 (1968) 765–785

    Google Scholar 

  7. Kawase, Y.; Moo-Young, M.: Volumetric mass transfer coefficients in aerated stirred reactors with Newtonian and non-Newtonian media. Chem. Eng. Res. Des. 66 (1988) 284–288

    Google Scholar 

  8. Peters, H.-U.; Suh, I.-S.; Schumpe, A.; Deckwer, W.-D.: Modeling of batch wise xanthan production. Can. J. Chem. Eng. 70 (1992) 742–750

    Google Scholar 

  9. Margaritis, A.; Pace, G.: Microbial polysaccharides. In Comprehensive Biotechnology. Vol. 3, pp. 1005–1043. (M. Moo-Young, Ed.)

  10. Whitcomb, P.J.; Macosko, C.W.: Rheology of xanthan gum. J. Rheol. 22 (1978) 493–505

    Google Scholar 

  11. Galindo, E.; Torrestiana, B.; Garcia-Rejon, A.: Rheological characterization of xanthan fermentation broths and their reconstituted solutions. Bioprocess Eng. 4 (1989) 113–118.

    Google Scholar 

  12. Solomon, J.; Elson, T.P.; Nienow, A.W.: Cavern sizes in agitated fluids with a yield stress. Chem. Eng. Commun. 11 (1981) 143–164

    Google Scholar 

  13. Downing, A.L.; Melbourne, K.V.; Bruce, A.M.: The effect of contaminants on the rate of aeration in water. J. Appl. Chem. (Brit.). 7 (1957) 590–596

    Google Scholar 

  14. Eckenfelder, W.W.: Factors affecting aeration efficiency of sewage and industrial wastes. Sewage and Industrial Wastes. 31 (1959) 60–70

    Google Scholar 

  15. Gaden, E.L.; Jr.: Aeration and oxygen transfer in biological systems. In Biological Treatment of Sewage and Industrial Wastes. Vol. 1, p. 172. New York: Reinhold Publishing Co. 1956

    Google Scholar 

  16. Ippen, A.T.; Carver, C.E.: Basic factors of oxygen transfer in aeration systems. Sewage and Industrial Wastes. 26 (1954) 813–827

    Google Scholar 

  17. Lynch, W.O.; Sawyer, C.N.: Physical behavior of synthetic detergents. I. Preliminary studies on frothing and oxygen transfer. Sewage and Industrial Wastes. 26 (1954) 1193–1201

    Google Scholar 

  18. Keitel, G.; Onken, U.: The effects of solutes on bubble size in air-water dispersions. Chem. Eng. Sci. 17 (1982) 85–98

    Google Scholar 

  19. Robinson, C.W.; Wilke, C.R.: Simultaneous measurement of interfacial area and mass transfer coefficients for a well-mixed gas dispersion in aqueous electrolyte solutions. AIChE J. 20 (1974) 285–294

    Google Scholar 

  20. Zieminski, S.A.; Whittemore, R.C.: Behavior of gas bubbles in aqueous electrolyte solutions. Chem. Eng. Sci. 26 (1971) 509–520

    Google Scholar 

  21. Ju, L.-K.; Ho, C.S.; Shanahan, J.F.: Effects of carbon dioxide on the rheological behavior and oxygen transfer in submerged penicillin fermentations. Biotechnol. Bioeng. 38 (1991) 1223–1232

    Google Scholar 

  22. Deindoerfer, F.H.; Gaden, E.L.; Jr.: Effects of liquid physical properties on oxygen transfer in penicillin fermentation. Appl. Microbiol. 3 (1955) 253–257

    Google Scholar 

  23. Ryu. D.Y.; Humphrey, A.E.: A reassessment of oxygen-transfer rates in antibiotics fermentations. J. Ferment. Technol. 50 (1972) 424–431

    Google Scholar 

  24. Andrews, G.F.; Fonta, J.P.; Marrotta, E.; Stroeve, P.: The effect of cells on oxygen transfer coefficients I: Cell accumulation around bubbles. Chem. Eng. J. 29 (1980) B39-B46

    Google Scholar 

  25. Andrews, G.F.; Fonta, J.P.; Marrotta, E.; Stroeve, P.: The effect of cells on oxygen transfer coefficients II: Analysis of enhancement mechanisms. Chem. Eng. J. 29 (1980) B47-B55

    Google Scholar 

  26. Bungay, H.R.; Masak, R.D.: Estimation of thickness of bacterial films at an air-water interface. Biotechnol. Bioeng. 23 (1981) 1155–1157

    Google Scholar 

  27. Wise, D.L.; Wang, D.I.C.; Matelles, R.I.: Increased oxygen mass transfer from single bubbles in microbial systems at low Reynolds numbers. Biotechnol. Bioeng. 11 (1969) 647–681

    Google Scholar 

  28. Ju, L.-K.; Sundararajan, A.: The effects of cells on oxygen transfer in bioreactors: physical presence of cells as solid particles. Chem. Eng. J. 56 (1994) B15-B21

    Google Scholar 

  29. Bartholomew, W.H.; Karow, E.O.; Sfat, M.R.; Wilhelm, R.H.: Oxygen transfer and agitation in submerged fermentations: Mass transfer of oxygen in submerged fermentation of Streptomyces griseus. Ind. Eng. Chem. 42 (1950) 1801–1809

    Google Scholar 

  30. Sobotka, M.; Votruba, J.; Prokop, A.: A two-phase oxygen uptake model of aerobic fermentations. Biotechnol. Bioeng. 23 (1981) 1193–1202

    Google Scholar 

  31. King, L.R.; Palmer, H.J.: Interfacial adsorption of microorganisms and its effect on oxygen absorption by fermentation broths. Appl. Biochem. Biotech. 20/21 (1989) 403–419

    Google Scholar 

  32. Palmer, H.J.; Hui, P.K.: Accumulation of microorganisms at the gas-liquid interface: roles of cell motility and chemotaxis. Presented at the Annual AIChE Meeting, Los Angeles, 1991

  33. Ju, L.-K.; Sundararajan, A.: Model analysis of biological oxygen transfer enhancement in surface-aerated bioreactors. Biotechnol. Bioeng. 40 (1992) 1343–1352

    Google Scholar 

  34. Aiba, S., Huang, S.Y.: Oxygen permeability and diffusivity in polymer membranes immersed in liquids. Chem. Eng. Sci. 24 (1969) 1149–1159

    Google Scholar 

  35. Bandyopadhyay, B., Humphrey, A.E.; Taguchi, H.: Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol. Bioeng. 9 (1967) 533–544

    Google Scholar 

  36. Dang, N.D.P.; Karrer, D.A.; Dunn, I.J.: Oxygen transfer coefficients by dynamic model moment analysis. Biotechnol. Bioeng. 19 (1977) 853–865

    Google Scholar 

  37. Ruchti, G.; Dunn, I.J.; Bourne, J.R.: Comparison of dynamic oxygen electrode methods for the measurement of kLa. Biotechnol. Bioeng. 23 (1981) 277–290

    Google Scholar 

  38. Smith, E.L.; Hill, R.L.; Lehman, I.R.; Lefkowitz, R.J.; Handler, P.; White, A.: Priciples of Biochemistry: General Aspects. (7th edn.) New York: McGraw Hill 1983

    Google Scholar 

  39. Ju, L.-K.; Ho, C.S.; Shanahan, J.F.: Effects of carbon dioxide on the rheological behavior and oxygen transfer in submerged penicillin fermentations. Biotechnol. Bioeng. 38 (1991) 1223–1232

    Google Scholar 

  40. Sobotka, M.; Prokop, A.; Dunn, I.J.; Einsele, A.: Review of methods for the measurement of oxygen transfer in microbial systems. Ann. Reports Ferment. Processes 5 (1982) 127–210

    Google Scholar 

  41. Sundararajan, A.; Ju, L.-K.: Liquid-film time constant assessment for k La measurements in respiring fermentation broths. Chem. Eng. Commun. 131 (1995) 161–171

    Google Scholar 

  42. Weber, M.E.; Paddock, D.: Interceptional and gravitational collision efficiencies for single collectors at intermediate Reynolds numbers. J. Colloid Interface Sci. 94 (1983) 328–335

    Google Scholar 

  43. Rahn, O.; Richardson, G.L.: Oxygen demand and oxygen supply. J. Bacteriol. 41 (1941) 225–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, L.K., Sundararajan, A. The effects of cells on oxygen transfer in bioreactors. Bioprocess Engineering 13, 271–278 (1995). https://doi.org/10.1007/BF00417639

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417639

Keywords

Navigation