Skip to main content
Log in

Transition zone between the upper diatreme and lower diatreme: origin and significance at Round Butte, Hopi Buttes volcanic field, Navajo Nation, Arizona

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Round Butte is a small but complex Miocene diatreme that crops out ~ 190 m below the pre-eruptive surface, in the southeastern part of the Hopi Buttes volcanic field. Erosional remnants consist of a diatreme 170–190 m in diameter, of which the central 130–150 m is well-exposed in a massif featuring 20–30-m-high sub-vertical cliffs, and a 50-cm-thick basanite dike. Field mapping allowed us to define three main groups of pyroclastic rocks in the diatreme: undisturbed beds, disturbed beds, and non-bedded rocks. Pyroclastic rocks range in grain size from coarse tuff to tuff breccia and in componentry from juvenile-rich to lithic-rich, with a dominance of heterolithic lapilli tuffs. Rocks from the undisturbed bedded pyroclastic group are present above an unconformity found all around the massif, whereas the disturbed bedded and the non-bedded pyroclastic groups are always found below it. This unconformity was previously understood as the contact between the upper and the lower diatremes. The undisturbed beds above the unconformity indeed compose the upper diatreme, but the assemblage of non-bedded rocks (invasive columns) and disturbed beds (residual columns) below it is not typical of the lower diatreme. Instead, they represent a transition zone between the upper and lower diatremes. Such a transition zone also occurs in other diatremes, it is important genetically, and we propose to add it to the general model of maar-diatreme volcanoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Austin-Erickson A, Ort MH, Carrasco-Núñez G (2011) Rhyolitic phreatomagmatism explored: Tepexitl tuff ring (Eastern Mexican Volcanic Belt). J Volcanol Geotherm Res 201:325–341

    Article  Google Scholar 

  • Bélanger C, Ross P-S (2018) Origin of nonbedded pyroclastic rocks in the Cathedral Cliff diatreme, Navajo volcanic field, New Mexico. Bull Volcanol 80:61

    Article  Google Scholar 

  • Billingsley GH, Block D, Hiza-Redsteer M (2013) Geologic map of the Winslow 30′ × 60′ quadrangle, Coconino and Navajo counties, northern Arizona. US Geological Survey Scientific Investigations, Map 3247, scale 1:50 000

  • Clement CR (1982) A comparative geological study of some major kimberlite pipes in the Northern Cape and Orange Free State. PhD thesis, University of Cape Town

  • Delpit S, Ross P-S, Hearn BC (2014) Deep-bedded ultramafic diatremes in the Missouri River Breaks volcanic field, Montana, USA: 1 km of syn-eruptive subsidence. Bull Volcanol 76:1–22

    Article  Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin

    Book  Google Scholar 

  • Furnes H (1975) Experimental palagonitization of basaltic glasses of varied composition. Contrib Mineral Petrol 50:105–113

    Article  Google Scholar 

  • Gernon TM, Gilbertson MA, Sparks RSJ, Field M (2008) Gas-fluidisation in an experimental tapered bed: insights into processes in diverging volcanic conduits. J Volcanol Geotherm Res 174:49–56

    Article  Google Scholar 

  • Gernon T, Upton B, Hincks T (2013) Eruptive history of an alkali basaltic diatreme from Elie Ness, Fife, Scotland. Bull Volcanol 75:1–20

    Article  Google Scholar 

  • Gilbert H, Velasco AA, Zandt G (2007) Preservation of Proterozoic terrane boundaries within the Colorado Plateau and implications for its tectonic evolution. Earth Planet Sci Lett 258:237–248

    Article  Google Scholar 

  • Graettinger A (2018) Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database. J Volcanol Geotherm Res 357:1–13

    Article  Google Scholar 

  • Graettinger AH, Valentine GA, Sonder I, Ross P-S, White JDL (2015) Facies distribution of ejecta in analog tephra rings from experiments with single and multiple subsurface explosions. Bull Volcanol 77:1–12

    Article  Google Scholar 

  • Hack JT (1942) Sedimentation and volcanism in the Hopi Buttes, Arizona. Geol Soc Am Bull 53:335–372

    Article  Google Scholar 

  • Hart RJ, Ward JJ, Bills DJ, Flynn ME (2002) Generalized hydrogeology and ground-water budget for the C aquifer, Little Colorado River Basin and parts of the Verde and Salt River Basins, Arizona and New Mexico. US Geological Survey Water-Resources Investigations Report: 02–4026, 54

  • Hooten JA (1999) Phreatomagmatic diatremes of the western Hopi Buttes volcanic field, Navajo Nation, Arizona. Msc thesis, University of Northern Arizona

  • Hooten J, Ort M (2002) Peperite as a record of early-stage phreatomagmatic fragmentation processes: an example from the Hopi Buttes volcanic field, Navajo Nation, Arizona, USA. J Volcanol Geotherm Res 114:95–106

    Article  Google Scholar 

  • Houghton B, Wilson C (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Kienle J, Kyle PR, Self S, Motyka RJ, Lorenz V (1980) Ukinrek Maars, Alaska, I. April 1977 eruption sequence, petrology and tectonic setting. J Volcanol Geotherm Res 7:11–37

    Article  Google Scholar 

  • Kurszlaukis S, Büttner R, Zimanowski B, Lorenz V (1998) On the first experimental phreatomagmatic explosion of a kimberlite melt. J Volcanol Geotherm Res 80:323–326

    Article  Google Scholar 

  • Kurszlaukis S, Mahotkin I, Rotman A, Kolesnikov G, Makovchuk I (2009) Syn-and post-eruptive volcanic processes in the Yubileinaya kimberlite pipe, Yakutia, Russia, and implications for the emplacement of South African-style kimberlite pipes. Lithos 112:579–591

    Article  Google Scholar 

  • Le Corvec N, Muirhead JD, White JDL (2018) Shallow magma diversions during explosive diatreme-forming eruptions. Nat Commun 9:1459–1459

    Article  Google Scholar 

  • Lefebvre NS (2013) Volcanology of maar-diatreme volcanic vent complexes, Hopi Buttes Volcanic Field, Navajo Nation, Arizona, USA. PhD thesis, University of Otago

  • Lefebvre N, White JDL, Kjarsgaard B (2013) Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: Standing Rocks West, Hopi Buttes, Navajo Nation, USA. Bull Volcanol 75:1–17

    Article  Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaard BA (2016) Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA. J Volcanol Geotherm Res 310:186–208

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines 15:72–83

    Google Scholar 

  • Lorenz V (2007) Syn-and posteruptive hazards of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:285–312

    Article  Google Scholar 

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:4–32

    Article  Google Scholar 

  • Moore J (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30:337–363

    Article  Google Scholar 

  • Muirhead JD, Van Eaton AR, Re G, White JDL, Ort MH (2016) Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA. Bull Volcanol 78:1–16

    Article  Google Scholar 

  • Ort MH, Carrasco-Núñez G (2009) Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico. J Volcanol Geotherm Res 181:67–77

    Article  Google Scholar 

  • Ort MH, Lefebvre NS, Neal CA, McConnell VS, Wohletz KH (2018) Linking the Ukinrek 1977 maar-eruption observations to the tephra deposits: new insights into maar depositional processes. J Volcanol Geotherm Res 360:36–60

    Article  Google Scholar 

  • Porritt L, Cas R, Crawford B (2008) In-vent column collapse as an alternative model for massive volcaniclastic kimberlite emplacement: an example from the Fox kimberlite, Ekati Diamond Mine, NWT, Canada. J Volcanol Geotherm Res 174:90–102

    Article  Google Scholar 

  • Re G, White JDL, Ort M (2015) Dikes, sills, and stress-regime evolution during emplacement of the Jagged Rocks complex, Hopi Buttes Volcanic field, Navajo Nation, USA. J Volcanol Geotherm Res 295:65–79

    Article  Google Scholar 

  • Re G, White JDL, Muirhead JD, Ort MH (2016) Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA). Bull Volcanol 78:1–20

    Article  Google Scholar 

  • Ripepe M, Delle Donne D, Harris A, Marchetti E, Ulivieri G (2008) Dynamics of Strombolian activity. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli Volcano: an integrated study of the 2002–2003 eruption, American Geophysical Union, Geophysical Monograph 182:39–48

  • Ross P-S, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geotherm Res 149:62–84

    Article  Google Scholar 

  • Ross P-S, White JDL, McClintock M (2008a) Geological evolution of the Coombs–Allan Hills area, Ferrar large igneous province, Antarctica: debris avalanches, mafic pyroclastic density currents, phreatocauldrons. J Volcanol Geotherm Res 172:38–60

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008b) Multiphase flow above explosion sites in debris-filled volcanic vents: insights from analogue experiments. J Volcanol Geotherm Res 178:104–112

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008c) Rapid injection of particles and gas into non-fluidized granular material, and some volcanological implications. Bull Volcanol 70:1151–1168

    Article  Google Scholar 

  • Ross P-S, White JDL, Valentine GA, Taddeucci J, Sonder I, Andrews RG (2013) Experimental birth of a maar–diatreme volcano. J Volcanol Geotherm Res 260:1–12

    Article  Google Scholar 

  • Ross P-S, Núñez GC, Hayman P (2017) Felsic maar-diatreme volcanoes: a review. Bull Volcanol 79:1–33

    Article  Google Scholar 

  • Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65

    Article  Google Scholar 

  • Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108:1199–1211

    Article  Google Scholar 

  • Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855

    Article  Google Scholar 

  • Stroncik NA, Schmincke H-U (2002) Palagonite–a review. Int J Earth Sci 91:680–697

    Article  Google Scholar 

  • Taddeucci J, Valentine GA, Sonder I, White JDL, Ross P-S, Scarlato P (2013) The effect of pre-existing craters on the initial development of explosive volcanic eruptions: an experimental investigation. Geophys Res Lett 40:507–510

    Article  Google Scholar 

  • Thomas APW (1888) Report on the eruption of Tarawera and Rotomahana, New Zealand. Government Printer, Wellington, New Zealand

    Google Scholar 

  • Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40:1111–1114

    Article  Google Scholar 

  • Valentine GA, White JDL, Ross P-S, Amin J, Taddeucci J, Sonder I, Johnson PJ (2012) Experimental craters formed by single and multiple buried explosions and implications for volcanic craters with emphasis on maars. Geophys Res Lett 39:L20301

    Article  Google Scholar 

  • Valentine GA, Graettinger AH, Sonder I (2014) Explosion depths for phreatomagmatic eruptions. Geophys Res Lett 41:3045–3051

    Article  Google Scholar 

  • Valentine GA, Sottili G, Palladino DM, Taddeucci J (2015) Tephra ring interpretation in light of evolving maar–diatreme concepts: Stracciacappa maar (Central Italy). J Volcanol Geotherm Res 308:19–29

    Article  Google Scholar 

  • van Otterloo J, Ort MH, Cruden AR (2018) Unique occurrence of a folded in-vent dike: new insights on magma-water mixing. Geology 46:379–382

    Article  Google Scholar 

  • Vazquez JA (1998) Maar volcanism in the Wood Chop Mesa area, Hopi Buttes volcanic field, Navajo Nation, Arizona. Msc thesis, University of Northern Arizona

  • Vazquez JA, Ort MH (2006) Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J Volcanol Geotherm Res 154:222–236

    Article  Google Scholar 

  • White JDL (1989) Basic elements of maar-crater deposits in the Hopi Buttes volcanic field, northeastern Arizona, USA. J Geol 97:117–125

    Article  Google Scholar 

  • White JDL (1990) Depositional architecture of a maar-pitted playa: sedimentation in the Hopi Buttes volcanic field, northeastern Arizona, USA. Sediment Geol 67:55–84

    Article  Google Scholar 

  • White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258

    Article  Google Scholar 

  • White JDL (1996) Impure coolants and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74:155–170

    Article  Google Scholar 

  • White JDL, McClintock M (2001) Immense vent complex marks flood-basalt eruption in a wet, failed rift: Coombs Hills, Antarctica. Geology 29:935–938

    Article  Google Scholar 

  • White JDL, Houghton B (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29

    Article  Google Scholar 

  • White JDL, Houghton B (2015) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Elsevier second edition 495-511

  • Williams H (1936) Pliocene volcanoes of the Navajo-Hopi country. Geol Soc Am Bull 47:111–172

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V, Häfele HG (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res Solid Earth 102:803–814

    Article  Google Scholar 

Download references

Acknowledgments

James D.L. White did the early work on Round Butte, introduced Pierre-Simon Ross to this fascinating volcano, and read a draft of the manuscript. Pier Paolo Comida helped us in the field. We thank the Morris family for allowing us to work at Round Butte. Any persons wishing to conduct geological investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, USA, telephone 1-928-871-6587. We thank Alison H. Graettinger and an anonymous reviewer for their constructive reviews, and editor Jacopo Taddeucci for his suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Latutrie.

Additional information

Editorial responsibility: J. Taddeucci

Electronic supplementary material

ESM 1

(PDF 1070 kb)

ESM 2

(PDF 587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latutrie, B., Ross, PS. Transition zone between the upper diatreme and lower diatreme: origin and significance at Round Butte, Hopi Buttes volcanic field, Navajo Nation, Arizona. Bull Volcanol 81, 26 (2019). https://doi.org/10.1007/s00445-019-1285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-019-1285-x

Keywords

Navigation