Skip to main content
Log in

Deep-bedded ultramafic diatremes in the Missouri River Breaks volcanic field, Montana, USA: 1 km of syn-eruptive subsidence

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The ultramafic Eocene Missouri River Breaks volcanic field (MRBVF, Montana, USA) includes over 50 diatremes emplaced in a mostly soft substrate. The current erosion level is 1.3–1.5 km below the pre-eruptive surface, exposing the deep part of the diatreme structures and some dikes. Five representative diatremes are described here; they are 200-375 m across and have sub-vertical walls. Their infill consists mostly of 55-90 % bedded pyroclastic rocks (fine tuffs to coarse lapilli tuffs) with concave-upward bedding, and 45–10 % non-bedded pyroclastic rocks (medium lapilli tuffs to tuff breccias). The latter zones form steep columns 15–135 m in horizontal dimension, which cross-cut the bedded pyroclastic rocks. Megablocks of the host sedimentary formations are also present in the diatremes, some being found 1 km or more below their sources. The diatreme infill contains abundant lithic clasts and ash-sized particles, indicating efficient fragmentation of magma and country rocks. The spherical to sub-spherical juvenile clasts are non-vesicular. They are accompanied by minor accretionary lapilli and armored lapilli. The deposits of dilute pyroclastic density currents are locally observed. Our main interpretations are as follows: (1) the observations strongly support phreatomagmatic explosions as the energy source for fragmentation and diatreme excavation; (2) the bedded pyroclastic rocks were deposited on the crater floor, and subsided by 1.0–1.3 km to their current location, with subsidence taking place mostly during the eruption; (3) the observed non-bedded pyroclastic columns were created by debris jets that punched through the bedded pyroclastic material; the debris jets did not empty the mature diatreme, occupying only a fraction of its width, and some debris jets probably did not reach the crater floor; (4) the mature diatreme was nearly always filled and buttressed by pyroclastic debris at depth – there was never a 1.3–1.5-km-deep empty hole with sub-vertical walls, otherwise the soft substrate would have collapsed inward, which it only did near the surface, to create the megablocks. We infer that syn-eruptive subsidence shifted down bedded pyroclastic material and shallow sedimentary megablocks by 0.8–1.1 km or more, after which limited post-eruptive subsidence occurred. This makes the MRBVF diatremes an extreme end-member case of syn-eruptive subsidence in the spectrum of possibilities for maar-diatreme volcanoes worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alvarado GE, Soto GJ, Salani FM, Ruiz P, Hurtado de Mendoza L (2011) The formation and evolution of Hule and Río Cuarto maars, Costa Rica. J Volcanol Geotherm Res 201:342–356

    Google Scholar 

  • Aranda-Gómez JJ, Luhr JF (1996) Origin of the Joya Honda maar, San Luis Potosí, México. J Volcanol Geotherm Res 74:1–18

    Google Scholar 

  • Auer A, Martin U, Németh K (2007) The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex-Implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting. J Volcanol Geotherm Res 159:225–245

    Google Scholar 

  • Befus KS, Hanson RE, Lehman TM, Griffin WR (2008) Cretaceous basaltic phreatomagmatic volcanism in West Texas: maar complex at Peña Mountain, Big Bend National Park. J Volcanol Geotherm Res 173:245–264

    Google Scholar 

  • Bertotto GW, Bjerg EA, Cingolani CA (2006) Hawaiian and Strombolian style monogenetic volcanism in the extra-Andean domain of central-west Argentina. J Volcanol Geotherm Res 158:430–444

    Google Scholar 

  • Bowen GJ, Beerling DJ, Koch PL, Zachos JC, Quattlebaum T (2004) A humid climate state during the Palaeocene/Eocene thermal maximum. Nature 432:495–499

    Google Scholar 

  • Brown RJ, Valentine GA (2013) Physical characteristics of kimberlite and basaltic intraplate volcanism and implications of a biased kimberlite record. Geol Soc Am Bull 125:1224–1238

    Google Scholar 

  • Brown RJ, Gernon T, Stiefenhofer J, Field M (2008) Geological constraints on the eruption of the Jwaneng Centre kimberlite pipe, Botswana. J Volcanol Geotherm Res 174:195–208

    Google Scholar 

  • Brown RJ, Tait M, Field M, Sparks RSJ (2009) Geology of a complex kimberlite pipe (K2 pipe, Venetia Mine, South Africa): insights into conduit processes during explosive ultrabasic eruptions. Bull Volcanol 71:95–112

    Google Scholar 

  • Brown RJ, Manya S, Buisman I, Fontana G, Field M, Mac Niocaill C, Sparks RSJ, Stuart FM (2012) Eruption of kimberlite magmas: physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth (the Upper Pleistocene/Holocene Igwisi Hills volcanoes, Tanzania). Bull Volcanol 74:1621–1643

    Google Scholar 

  • Buchel G, Lorenz V (1993) Syn-and post-eruptive mechanism of the alaskan Ukinrek maars in 1977. In: Negendank JFW, Zolitschka B (eds) Paleolimnology of European Maar Lakes. pp 15-60

  • Büttner R, Zimanowski B (1998) Physics of thermohydraulic explosions. Phys Rev E 57:5726–5729

    Google Scholar 

  • Büttner R, Zimanowski B (2003) Phreatomagmatic explosions in subaqueous volcanism. In: White JDL et al. (eds) Explosive subaqueous volcanism. Am Geophys U Geophys Monograph 140:51–60

  • Büttner R, Dellino P, Zimanowski B (1999) Identifying magma–water interaction from the surface features of ash particles. Nature 401:688–690

    Google Scholar 

  • Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress-induced brittle fragmentation of magmatic melts: theory and experiments. J Geophys Res 111:B08204

    Google Scholar 

  • Calvari S, Tanner LH (2011) The Miocene Costa Giardini diatreme, Iblean Mountains, southern Italy: model for maar-diatreme formation on a submerged carbonate platform. Bull Volcanol 73:557–576

    Google Scholar 

  • Carrasco-Núñez G, Ort MH, Romero C (2007) Evolution and hydrological conditions of a maar volcano (Atexcac crater, Eastern Mexico). J Volcanol Geotherm Res 159:179–197

    Google Scholar 

  • Carrigan CR (2000) Plumbing systems. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 219–235

    Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Allen and Unwin, London, 528 pp

    Google Scholar 

  • Cas RAF, Hayman P, Pittari A, Porritt L (2008a) Some major problems with existing models and terminology associated with kimberlite pipes from a volcanological perspective, and some suggestions. J Volcanol Geotherm Res 174:209–225

    Google Scholar 

  • Cas RAF, Porrit L, Pittari A, Hayman P (2008b) A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits: descriptive to genetic. J Volcanol Geotherm Res 174:226–240

    Google Scholar 

  • Cas RAF, Porrit L, Pittari A, Hayman P (2009) A practical guide to terminology for kimberlite facies: a systematic progression from descriptive to genetic, including a pocket guide. Lithos 112:183–190

    Google Scholar 

  • Cashman KV, Sturtevant B, Papale P, Navon O (2000) Magmatic fragmentation. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 421–430

    Google Scholar 

  • Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37:1115–1135

    Google Scholar 

  • Christiansen RL, Foulger GR, Evans JR (2002) Upper-mantle origin of the Yellowstone hotspot. Geol Soc Am Bull 114:1245–1256

    Google Scholar 

  • Cioni R, Marianelli P, Santagroce R, Sbrana A (2000) Plinian and subplinian eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 477–494

    Google Scholar 

  • Clement CR (1982) A comparative geological study of some major kimberlite pipes in the North Cape and Orange Free State. Unpublished Ph.D. dissertation, University of Cape Town, South Africa, 432 p

  • Clement CR, Reid AM (1989) The origin of kimberlite pipes: an interpretation based on a synthesis of geological features displayed by southern African occurrences. In Ross et al. (eds.), Kimberlites and Related Rocks. Geol Soc Aus Sp Pub 14:632–646

  • Crowe BM, Fisher RV (1973) Sedimentary structures in base-surge deposits with special reference to cross-bedding, Ubehebe craters, Death Valley, California. Geol Soc Am Bull 84:663–682

    Google Scholar 

  • Delpit S (2013) From maar to diatremes: Pali Aike (Argentina) and Missouri River Breaks (United-States) volcanic fields. PhD thesis. Institut national de la recherche scientifique, Québec, Canada, 320 p

  • Dostal J, Breitsprecher K, Church BN, Thorkelson D, Hamilton TS (2003) Eocene melting of Precambrian lithospheric mantle: analcime-bearing volcanic rocks from the Challis-Kamloops belt of south central British Columbia. J Volcanol Geotherm Res 126:303–326

    Google Scholar 

  • Downes PJ, Ferguson D, Griffin BJ (2007) Volcanology of the Aries micaceous kimberlite, central Kimberley Basin, Western Australia. J Volcanol Geotherm Res 159:85–107

    Google Scholar 

  • Downey JS, Dinwiddie GA (1988) The regional aquifer system underlying the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming—summary. Regional aquifer-system analysis. US Geol Surv Professional Paper 1402-A, 64 pp

  • Dudás FÖ (1991) Geochemistry of igneous rocks from the Crazy Mountains, Montana, and tectonic models for the Montana alkalic province. J Geophys Res 96:13261–13277

    Google Scholar 

  • Duke GI (2009) Black-Hills—Alberta carbonatite-kimberlite linear trend: Slab edge at depth? Tectonophysics 464:186–194

    Google Scholar 

  • Field M, Stiefenhofer J, Robey J, Kurszlaukis S (2008) Kimberlite-hosted diamond deposits of southern Africa: a review. Ore Geol Rev 34:33–75

    Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic Rocks. Springer, Berlin, 472 pp

    Google Scholar 

  • Fisher RV, Waters AC (1970) Base surge bed forms in maar volcanoes. Am J Sci 268:157–180

    Google Scholar 

  • Foreman BZ, Heller PL, Clementz T (2012) Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary. Nature. doi:10.1038/nature11513

    Google Scholar 

  • Francis EH (1970) Bedding in Scottish (Fifeshire) tuff-pipes and its relevance to maars and calderas. Bull Volcanol 34:697–712

    Google Scholar 

  • Freda C, Gaeta M, Kamer DB, Marra F, Renne PR, Taddeucci J, Scarlato P, Christensen JN, Dallai L (2006) Eruptive history and petrologic evolution of the Albano multiple maar (Alban Hills, Central Italy). Bull Volcanol 68:567–591

    Google Scholar 

  • Gençalioglu-Kuscu G, Atilla C, Cas RAF, Kuşcu İ (2007) Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar). J Volcanol Geotherm Res 159:198–209

    Google Scholar 

  • Gernon TM, Brown RJ, Tait MA, Hincks TK (2012) The origin of pelletal lapilli in explosive kimberlite eruptions. Nat Commun. doi:10.1038/ncomms1842

    Google Scholar 

  • Gernon TM, Upton BGJ, Hincks TK (2013) Eruptive history of an alkali basaltic diatreme from Elie Ness, Fife, Scotland. Bull Volcanol 75:1–20

    Google Scholar 

  • Geshi N, Németh K, Oikawa T (2011) Growth of phreatomagmatic explosion craters: a model inferred from Suoana crater in Miyakejima Volcano, Japan. J Volcanol Geotherm Res 201:30–38

    Google Scholar 

  • Gilbert JS, Lane SJ (1994) The origin of accretionary lapilli. Bull Volcanol 56:398–411

    Google Scholar 

  • Hawthorne JB (1975) Model of a kimberlite pipe. In: Ahrens LH, Dawson JB, Duncan AR, Erlank AJ (eds) Phys Chem Earth 9, Pergamon Press, pp 1–15

  • Hearn BC Jr (1968) Diatremes with kimberlitic affinities in north-central Montana. Science 159:622–625

    Google Scholar 

  • Hearn Jr BC (1979) Preliminary map of diatremes and alkali ultramafic intrusions, Missouri River Breaks and vicinity, north-central Montana. U S Geol Surv, Open File Report 79-1128, scale 1:125,000

  • Hearn Jr BC (2009) Missouri Breaks diatremes: Field Trip July 2009. Field Trip Guidebook (informal), 35 pp

  • Hearn Jr BC (2012) Missouri River Breaks diatremes, Montana, USA. Hopi Buttes volcanic field workshop. Abstract

  • Hearn BC Jr, Swadley WC, Pecora WT (1964) Geology of the Rattlesnake quadrangle, Bearpaw Mountains, Blaine County, Montana. US Geol Surv Bull 1181-B:66

    Google Scholar 

  • Hooten JA, Ort MH (2002) Peperite as a record of early-stage phreatomagmatic fragmentation processes: an example from the Hopi Buttes volcanic field, Navajo Nation, USA. J Volcanol Geotherm Res 114:95–106

    Google Scholar 

  • Houghton BF, Smith RT (1993) Recycling of magmatic clasts during explosive eruptions: estimating the true juvenile content of phreatomagmatic volcanic deposits. Bull Volcanol 55:414–420

    Google Scholar 

  • Houghton B, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Google Scholar 

  • Houghton BF, Wilson CJM, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 91:97–120, 44 pp

    Google Scholar 

  • Irving AJ, Hearn Jr BC (2003) Alkalic rocks of Montana: kimberlites, lamproites, and related magmatic rocks. Guidebook prepared for the VIIIth International Kimberlite Conference, Montana Field Trip

  • Jordan SC, Cas RAF, Hayman PC (2013) The origin of a large (>3 km) maar volcano by coalescence of multiple shallow craters: Lake Purrumbete maar, southeastern Australia. J Volcanol Geotherm Res 254:5–22

    Google Scholar 

  • Kienle J, Kyle PR, Self S, Motyka R, Lorenz V (1980) Ukinrek Maars, Alaska, I. Eruption sequence, petrology and tectonic setting. J Volcanol Geotherm Res 7:11–37

    Google Scholar 

  • Kurszlaukis S, Barnett WP (2003) Volcanological and structural aspects of the Venetia Kimberlite Cluster—a case study of South African kimberlite maar-diatreme volcanoes. S Afr J Geol 106:145–172

    Google Scholar 

  • Kurszlaukis S, Lorenz V (2008) Formation of “Tuffisitic Kimberlites” by phreatomagmatic processes. J Volcanol Geotherm Res 174:68–80

    Google Scholar 

  • Kurszlaukis S, Buttner R, Zimanowski B, Lorenz V (1998) On the first experimental phreatomagmatic explosion of a kimberlite melt. J Volcanol Geotherm Res 80:323–326

    Google Scholar 

  • Kwon CW, Sohn YK (2008) Tephra-filled volcanic neck (diatreme) of a mafic tuff ring at Maegok, Miocene Eoil Basin, SE Korea. Geosci J 12:317–329

    Google Scholar 

  • Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volcanol 69:445–460

    Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaard BA (2013) Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: Standing Rocks West, Hopi Buttes, Navajo Nation, USA. Bull Volcanol 75:739

    Google Scholar 

  • Lloyd E, Stoppa F (2003) Pelletal lapilli in diatremes—some inspiration from the Old Masters. GeoLines 15:65–71

    Google Scholar 

  • Lorenz V (1973) On the formation of maars. Bull Volcanol 37:183–203

    Google Scholar 

  • Lorenz V (1975) Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Phys Chem Earth 9, Pergamon Press, pp 17–27

  • Lorenz V (1985) Maars and diatremes of phreatomagmatic origin: a review. Trans Geol Soc S Afr 88:459–470

    Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Google Scholar 

  • Lorenz V (2000) Formation of maar-diatreme volcanoes. Terra Nostra 2000/6. International Maar Conference, Daun/Vulkaneifel, p. 284–291

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. GeoLines 15:72–83

    Google Scholar 

  • Lorenz V (2007) Syn- and posteruptive hazards of maar-diatreme volcanoes. J Volcanol Geotherm Res 159:285–312

    Google Scholar 

  • Lorenz V, Kurszlaukis S (1997) On the last explosions of carbonatite pipe G3b, Gross Brukkaros, Namibia. Bull Volcanol 59:1–9

    Google Scholar 

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. J Volcanol Geotherm Res 159:4–32

    Google Scholar 

  • Lorenz V, Zimanowski B, Fröhlich G (1994) Experiments on explosive basic and ultrabasic, ultramafic, and carbonatitic volcanism. Proc 5th Int Kimb Conf, Araxa Brazil. CPRM Spec Publ 1:270–284

    Google Scholar 

  • Lorenz V, Zimanowski B, Büttner R (2002) On the formation of deep-seated subterranean peperite-like magma–sediment mixtures. J Volcanol Geotherm Res 114:107–118

    Google Scholar 

  • Macdonald R, Upton BGJ, Collerson KD, Hearn BC Jr, James D (1992) Potassic mafic lavas of the Bearpaw Mountains, Montana: mineralogy, chemistry, and origin. J Petrol 33:305–346

    Google Scholar 

  • Martín-Serrano A, Vegas J, García-Cortés A, Galán L, Gallardo-Millán JL, Martín-Alfageme S, Rubio FM, Ibarra PI, Granda A, Pérez-González A, García-Lobón JL (2009) Morphotectonic setting of maar lakes in the Campo de Calatrava Volcanic Field (Central Spain, SW Europe). Sediment Geol 222:52–63

    Google Scholar 

  • McCallum ME (1976) An emplacement model to explain contrasting mineral assemblages in adjacent kimberlite pipes. J Geol 84:673–684

    Google Scholar 

  • McClintock M, White JDL (2006) Large phreatomagmatic vent complex at Coombs Hills, Antarctica: wet, explosive initiation of flood basalt volcanism in the Ferrar-Karoo LIP. Bull Volcanol 68:215–239

    Google Scholar 

  • McClintock M, Ross PS, White JDL (2009) The importance of the transport system in shaping the growth and form of kimberlite volcanoes. Lithos 112S:465–472

    Google Scholar 

  • Miller JA, Appel CL (1997) Ground water atlas of the United States. US Geol Surv, 300 pp

  • Mirnejad H, Bell K (2006) Origin and source evolution of the Leucite Hills lamproites: evidence from Sr–Nd–Pb–O isotopic compositions. J Petrol 47:2463–2489

    Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York, 442 pp

    Google Scholar 

  • Mitchell RH, Skinner EMW, Scott Smith BH (2009) Tuffisitic kimberlites from the Wesselton Mine, South Africa: mineralogical characteristics relevant to their formation. Lithos 112S:452–464

    Google Scholar 

  • Moore JG (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30:337–363

    Google Scholar 

  • Moore JG, Kasuaki N, Alcaraz A (1966) The 1965 eruption of Taal volcano. Science 151:955–960

    Google Scholar 

  • Morrissey MM, Mastin LG (2000) Vulcanian eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 463–475

    Google Scholar 

  • Naidoo P, Stiefenhofer J, Field M, Dobbe R (2004) Recent advances in the geology of Koffiefontein Mine, Free State, South Africa. Lithos 76:161–182

    Google Scholar 

  • Németh K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159:138–152

    Google Scholar 

  • Németh K, Martin U, Harangi S (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J Volcanol Geotherm Res 111:111–135

    Google Scholar 

  • Németh K, Martin U, Haller MJ, Alric VI (2007) Cenozoic diatreme field in Chubut (Argentina) as evidence of phreatomagmatic volcanism accompanied with extensive Patagonian plateau basalt volcanism. Episodes J Int Geosci 30:217–223

    Google Scholar 

  • Németh K, Haller MJ, Martin U, Risso C, Massaferro G (2008) Morphology of lava tumuli from Mendoza (Argentina), Patagonia (Argentina), and Al-Haruj (Libya). Zeits Geomorph 52:181–194

    Google Scholar 

  • Németh K, Cronin SJ, Haller MJ, Brenna M, Csillag G (2010) Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields. Cent Eur J Geosci 2:339–361

    Google Scholar 

  • Ngwa Suh CE, Devey CW (2010) Phreatomagmatic deposits and stratigraphic reconstruction at Debunscha Maar (Mt Cameroon volcano). J Volcanol Geotherm Res 192:201–211

    Google Scholar 

  • Nowicki T, Crawford B, Dyck D, Carlson J, McElroy R, Oshust P, Helmstaedt H (2004) The geology of kimberlite pipes of the Ekati property NWT, Canada. Lithos 76:1–27

    Google Scholar 

  • O’Brien HE, Irving AJ, McCallum IS (1991) Eocene potassic magmatism in the Highwood Mountains, Montana: petrology, geochemistry, and tectonic implications. J Geophys Res 96:13237–13260

    Google Scholar 

  • O’Brien HE, Irving AJ, McCallum IS, Thirlwall MF (1995) Strontium, neodymium, and lead isotopic evidence for the interaction of post-subduction asthenospheric potassic mafic magmas of the Highwood Mountains, Montana, USA, with ancient Wyoming craton lithospheric mantle. Geochem Cosmochim Acta 59:4539–4556

    Google Scholar 

  • Ort MH, Carrasco-Núñez G (2009) Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico. J Volcanol Geotherm Res 181:67–77

    Google Scholar 

  • Pardo N, Macias JL, Giordano G, Cianfarra P, Avellán DJ, Bellatreccia F (2009) The ~1245 yr BP Asososca maar eruption: The youngest event along the Nejapa–Miraflores volcanic fault, Western Managua, Nicaragua. J Volcanol Geotherm Res 184:292–312

    Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: The eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368

    Google Scholar 

  • Pirrung M, Büchel G, Jacoby W (2001) The Tertiary volcanic basins of Eckfeld, Enspel and Messel (Germany). Zeit Deut Geol Ges 152:27–59

    Google Scholar 

  • Porritt LA, Cas RAF (2009) Reconstruction of a kimberlite eruption, using an integrated volcanological, geochemical and numerical approach: a case study of the Fox Kimberlite, NWT, Canada. J Volcanol Geotherm Res 179:241–264

    Google Scholar 

  • Porter KW, Wilde EM (2001) Geologic map of the Zortman 30′ × 60′ quadrangle, central Montana. Montana Bureau of Mines and Geology Open File Report MBMG 438

  • Raue H (2004) A new model for the fracture energy budget of phreatomagmatic explosions. J Volcanol Geotherm Res 129:99–108

    Google Scholar 

  • Ross PS, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geotherm Res 149:62–84

    Google Scholar 

  • Ross PS, White JDL (2012) Quantification of vesicle characteristics in some diatreme-filling deposits, and the explosivity levels of magma–water interactions within diatremes. J Volcanol Geotherm Res 245–246:55–67

    Google Scholar 

  • Ross PS, White JDL, Zimanowski B, Büttner R (2008a) Rapid injection of particles and gas into non-fluidized granular material, and some volcanological implications. Bull Volcanol 70:1151–1168

    Google Scholar 

  • Ross PS, White JDL, Zimanowski B, Büttner R (2008b) Multiphase flow above explosion sites in debris-filled volcanic vents: insights from analogue experiments. J Volcanol Geotherm Res 178:104–112

    Google Scholar 

  • Ross PS, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar-diatreme volcanoes—an example of a mixed setting from the Pali Aike volcanic field, Argentina. J Volcanol Geotherm Res 201:253–271

    Google Scholar 

  • Ross PS, White JDL, Valentine GA, Taddeucci J, Sonder I, Andrews RG (2013) Experimental birth of a maar-diatreme volcano. J Volcanol Geotherm Res 260:1–12. doi:10.1016/j.jvolgeores.2013.05.005#_blank

    Google Scholar 

  • Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336

    Google Scholar 

  • Schipper CI, White JDL, Zimanowski B, Büttner R, Sonder I, Schmid A (2011) Experimental interaction of magma and “dirty” coolants. Earth Planet Sci Lett 303:323–336

    Google Scholar 

  • Schumacher R, Schmincke HU (1991) Internal structure and occurrence of accretionary lapilli—a case study at Laacher See Volcano. Bull Volcanol 53:612–634

    Google Scholar 

  • Schumacher R, Schmincke HU (1995) Models for the origin of accretionary lapilli. Bull Volcanol 56:626–639

    Google Scholar 

  • Self S, Kienle J, Huot JP (1980) Ukinrek Maars, Alaska II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65

    Google Scholar 

  • Son MS, Kim JS, Jung S, Ki JS, Kim MC, Sohn YK (2012) Tectonically controlled vent migration during maar–diatreme formation: an example from a Miocene half-graben basin in SE Korea. J Volcanol Geotherm Res 223–224:29–46

    Google Scholar 

  • Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180:189–202

    Google Scholar 

  • Sottili G, Palladino DM, Gaeta M, Masotta M (2012) Origins and energetics of maar volcanoes: examples from the ultrapotassic Sabatini Volcanic District (Roman Province, Central Italy). Bull Volcanol 74:163–186

    Google Scholar 

  • Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155:18–48

    Google Scholar 

  • Stiefenhofer J, Farrow D (2004) Crater deposits of the Mwadui kimberlite. Lithos 76:139–160

    Google Scholar 

  • Suhr P, Goth K, Lorenz V, Suhr S (2006) Long lasting subsidence and deformation in and above maar-diatreme volcanoes – a never ending story. Zeit Deut Ges Geowiss 157:491–511

    Google Scholar 

  • Swenson FA, Durum WH (1955) Geology and ground-water resources of the Missouri River Valley in Northeastern Montana. US Geol Surv Water supply Pap 1263:128

    Google Scholar 

  • Taddeucci J, Valentine GA, Sonder I, White JDL, Ross P-S, Scarlato P (2013) The effect of pre-existing craters on the initial development of explosive volcanic eruptions: an experimental investigation. Geophys Res Lett 40:507–510

    Google Scholar 

  • Valentine GA (2012) Shallow plumbing systems for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. J Volcanol Geotherm Res 223–224:47–63

    Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177:857–873

    Google Scholar 

  • Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40:1111–1114

    Google Scholar 

  • Valentine GA, Shufelt NL, Hintz ARL (2011) Models of maar volcanoes, Lunar Crater (Nevada, USA). Bull Volcanol 73:753–765

    Google Scholar 

  • Valentine GA, White JDL, Ross PS, Amin J, Taddeucci J, Sonder I, Johnson PJ (2012) Experimental craters formed by single and multiple buried explosions and implications for volcanic craters with emphasis on maars. Geophys Res Lett 39, Art

  • Van Eaton AR, Wilson CJN (2013) The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. J Volcanol Geotherm Res 250:129–154

    Google Scholar 

  • Vazquez JA, Ort MH (2006) Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J Volcanol Geotherm Res 154:222–236

    Google Scholar 

  • Vergniolle S, Mangan M (2000) Hawaiian and strombolian eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 447–461

    Google Scholar 

  • Vespermann D, Schmincke HU (2000) Scoria cones and tuff rings. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 683–694

    Google Scholar 

  • Waters AC, Fisher RV (1971) Base surges and their deposits: Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614

    Google Scholar 

  • White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258

    Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Google Scholar 

  • White JDL, McClintock M (2001) Immense vent complex marks flood-basalt eruption in a wet, failed rift: Coombs Hills, Antarctica. Geology 29:935–938

    Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29

    Google Scholar 

  • Wilde EM, Porter KW (2001) Geologic map of the Winifred 30′ × 60′ quadrangle, central Montana. Montana Bureau of Mines and Geology Open File 437, scale 1:100,000

  • Wilson L, Head JW (2007) An integrated model of kimberlite ascent and eruption. Nature 447:53–57

    Google Scholar 

  • Wohletz K, Sheridan MF (1983) Hydrovolcanic explosions. II. Evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413

    Google Scholar 

  • Zimanowski B (1998) Phreatomagmatic explosions. In: Freundt A, Rosi M (eds) From magma to tephra: modeling physical processes of explosive volcanic eruptions. Elsevier 25–53

  • Zimanowski B, Lorenz V, Frohlich G (1986) Experiments on phreatomagmatic explosions with silicate and carbonatitic melts. J Volcanol Geotherm Res 30:149–153

    Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V, Häfele H-G (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res 102:803–814

    Google Scholar 

  • Zimanowski B, Wohletz KH, Büttner R, Dellino P (2003) The volcanic ash problem. J Volcanol Geotherm Res 122:1–5

    Google Scholar 

Download references

Acknowledgements

This contribution is derived from the first author’s PhD thesis at INRS. V. Lorenz, J. Stix, and P. Francus are acknowledged for their input on the thesis. The study was funded by NSERC (Discovery grant to PSR) and an INRS start-up grant. We thank V. Lorenz, S. Kurszlaukis, and J.D.L. White for discussions during the 2009 Missouri River Breaks field workshop as well as field assistant M. Villemure for her precious help. G.A. Valentine and J.D.L. White kindly commented on the manuscript prior to submission. M. Ort and an anonymous reviewer provided helpful comments on the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séverine Delpit.

Additional information

Editorial responsibility: S. Self

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delpit, S., Ross, PS. & Hearn, B.C. Deep-bedded ultramafic diatremes in the Missouri River Breaks volcanic field, Montana, USA: 1 km of syn-eruptive subsidence. Bull Volcanol 76, 832 (2014). https://doi.org/10.1007/s00445-014-0832-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0832-8

Keywords

Navigation