Skip to main content
Log in

Eruptive history of an alkali basaltic diatreme from Elie Ness, Fife, Scotland

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Elie Ness diatreme (Fife, Scotland) is an ideal place to study the internal architecture and emplacement processes of diatremes. Elie Ness is one of approximately 100 alkali basaltic diatremes and intrusions in the East Fife area, emplaced during Upper Carboniferous to Early Permian times into an extensive rift system in the northern Variscan foreland. Within the diatreme, seven lithofacies and three lithofacies associations (LFAs 1–3) are recognised. Field, petrographic and geochemical studies demonstrate that the diatreme experienced a protracted history of eruption and infill, initially driven by volatile expansion and later by magma–water interaction. Massive lapilli tuffs of LFA 1 contain abundant highly vesicular juvenile scoria and magma-coated clasts, which are best explained by a magmatic origin for the early explosive eruptions. On a large-scale, the tuffs are well mixed and locally exhibit small-scale degassing structures attributed to fluidisation processes occurring within the diatreme fill. The occurrence of abundant volcaniclastic autoliths and megablocks within LFA 1 can be explained by subsidence of volcaniclastic strata from the maar crater and upper diatreme during emplacement. Pyroclastic density current deposits of LFA 2 form a series of continuous sheets across the diatreme, some of which may have originated from phreatomagmatic explosions in a neighbouring vent. We attribute the overall bedding pattern to a combination of primary volcanic processes and post-depositional folding related to movement along an adjacent fault. Minor steeply inclined breccias and tuffs of LFA 3 cross-cut the LFA 2 succession and are interpreted as late-stage volcaniclastic dykes and conduits, signalling the final phase of eruptive activity at Elie Ness. The study offers new insights into the volcanic evolution of diatremes fed by low viscosity, alkali-rich magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aranda-Gómez JJ, Luhr JF (1996) Origin of the Joya Honda maar, San Luis Potosí, México. J Volcanol Geoth Res 74:1–18

    Article  Google Scholar 

  • BGS (1971) Geological map of North Berwick (sheet 41). British Geological Survey

  • Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. no 27. Geological Society, London. Special Publications

    Google Scholar 

  • Brown RJ, Kavanagh J, Sparks RSJ, Tait M, Field M (2007) Mechanically disrupted and chemically weakened zones in segmented dike systems cause vent localization: evidence from kimberlite volcanic systems. Geology 35:815–818

    Article  Google Scholar 

  • Brown RJ, Gernon T, Stiefenhofer J, Field M (2008) Geological constraints on the eruption of the Jwaneng Centre kimberlite pipe, Botswana. J Volcanol Geoth Res 174:195–208. doi: 10.1016/j.jvolgeores.2007.12.032

    Article  Google Scholar 

  • Burgisser A, Bergantz GW (2002) Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents. Earth Planet Sci Lett 202:405–418. doi:10.1016/S0012-821X(02)00789-6

    Article  Google Scholar 

  • Cas R, Porritt L, Pittari A, Hayman P (2008) A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits: descriptive to genetic. J Volcanol Geoth Res 174:226–240. doi: 10.1016/j.jvolgeores.2007.12.018

    Article  Google Scholar 

  • Chapman NA (1976) Inclusions and megacrysts fron undersaturated tuffs and basanites. J Petrol 16:29–35

    Google Scholar 

  • Clement CR (1982) A comparative geological study of some major kimberlite pipes in northern Cape and Orange Free State. PhD thesis, University of Cape Town

  • Cloos H (1941) Bau und Tätigkeit von Tuffschloten; untersuchungen an dem Schwäbischen Vulkan. Geol Rundsch 32:709–800

    Article  Google Scholar 

  • Cole PD, Guest JE, Duncan AM, Pacheco JM (2001) Capelinhos 1957–1958, Faial, Azores: deposits formed by an emergent Surtseyan eruption. Bull Volcanol 63:204–220

    Article  Google Scholar 

  • Colvine RJL (1968) Pyrope from Elie, Fife. Scot J Geol 4:283–286

    Article  Google Scholar 

  • Constantini L, Houghton BF, Bonadonna C (2010) Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: the example of the Fontana Lapilli Plinian eruption, Nicaragua. J Volcanol Geoth Res 189:207–224

    Article  Google Scholar 

  • Doronzo DM (2012) Two new end members of pyroclastic density currents: forced convection-dominated and inertia-dominated. J Volcanol Geoth Res 219–220:87–91. doi:10.1016/j.jvolgeores.2012.01.010

    Article  Google Scholar 

  • Doubik P, Hill BE (1999) Magmatic and hydromagmatic conduit development during the 1975 Tolbachik Eruption, Kamchatka, with implications for hazards assessment at Yucca Mountain, NV. J Volcanol Geoth Res 91:43–64

    Article  Google Scholar 

  • Ekkerd J, Stiefenhofer J, Field M, Lawless PJ (2003) The geology of the Finsch Mine, Northern Cape Province, South Africa. In: 8th international kimberlite conference (IKC) long abstracts, Victoria, BC, Canada

  • Fisher RV (1961) Proposed classification of volcaniclastic sediments and rocks. Geol Soc Am Bull 72:1409–1414

    Article  Google Scholar 

  • Fontana G, MacNiocaill C, Brown RJ, Sparks RSJ, Field M (2011) Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Bull Volcanol 73:1063–1083

    Article  Google Scholar 

  • Francis EH (1970) Bedding in Scottish (Fifeshire) tuff-pipes and its relevance to maars and calderas. Bull Volcanol 34:697–712

    Article  Google Scholar 

  • Francis EH, Hopgood AM (1970) Volcanism and the Ardross Fault, Fife, Scotland. Scot J Geol 6:162–185

    Article  Google Scholar 

  • Freundt A, Schmincke HU (1985) Lithic-enriched segregation bodies in pyroclastic flow deposits in Laacher See Volcano (East Eifel, Germany). J Volcanol Geoth Res 25:193–224

    Article  Google Scholar 

  • Geikie A (1902) The geology of Eastern Fife. Geological Survey, Scotland

    Google Scholar 

  • Gernon TM, Gilbertson MA, Sparks RSJ, Field M (2008a) Gas-fluidisation in an experimental tapered bed: insights into processes in diverging volcanic conduits. J Volcanol Geoth Res 174:49–56. doi:10.1016/j.jvolgeores.2006.02.010

    Article  Google Scholar 

  • Gernon TM, Sparks RSJ, Field M (2008b) Degassing structures in volcaniclastic kimberlite: examples from southern African kimberlite pipes. J Volcanol Geoth Res 174:186–194. doi: 10.1016/j.jvolgeores.2007.12.035

    Article  Google Scholar 

  • Gernon TM, Fontana G, Field M, Sparks RSJ, Brown RJ, MacNiocaill C (2009a) Pyroclastic flow deposits from a kimberlite eruption: the Orapa South Crater, Botswana. Lithos 112S1:566–578

    Article  Google Scholar 

  • Gernon TM, Gilbertson MA, Sparks RSJ, Field M (2009b) The role of gas-fluidisation in the formation of massive volcaniclastic kimberlite. Lithos 112S:439–451

    Article  Google Scholar 

  • Gernon TM, Brown RJ, Tait MA, Hincks TK (2012a) The origin of pelletal lapilli in explosive kimberlite eruptions. Nat Commun 3(832):1–7

    Google Scholar 

  • Gernon TM, Field M, Sparks RSJ (2012b) Geology of the Snap Lake kimberlite intrusion, Northwest Territories, Canada: field observations and their interpretation. J Geol Soc Lond 169:1–16

    Article  Google Scholar 

  • Hawthorne JB (1975) Model of a kimberlite pipe. Phys Chem Earth 9:1–15

    Article  Google Scholar 

  • Hearn BC (1968) Diatremes with kimberlitic affinities in North-Central Montana. Science 159:622–625

    Article  Google Scholar 

  • Heiken GH (1971) Tuff rings: examples from the Fort Rock-Christmas Lake Valley basin, South-Central Oregon. J Geophys Res 76:5615–5626

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Carlo PD, Coltelli M, Sable JE, Carey R (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geoth Res 137:1–14

    Article  Google Scholar 

  • Kavanagh J, Sparks RSJ (2011) Insights of dyke emplacement mechanics from detailed 3D dyke thickness datasets. J Geol Soc Lond 168:965–978

    Article  Google Scholar 

  • Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70:563–582

    Article  Google Scholar 

  • Lorenz V (1975) Formation of phreatomagmatic maar-diatreme volcanoes and its relevance to kimberlite diatremes. Phys Chem Earth 9:17–29

    Article  Google Scholar 

  • Lorenz V, Nicholls IA (1984) Plate and intraplate processes of Hercynian Europe during the late Paleozoic. Tectonophysics 107:25–56. doi:10.1016/0040-1951(84)90027-1

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V, Haneke J (2004) Relationship between diatremes, dykes, sills, laccoliths, intrusive-extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe Basin, SW Germany. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems, vol 234. Geological Society, London, pp 75–124. Special Publications. doi:10.1144/GSL.SP.2004.234.01.07

  • Lorenz V (2007) Syn- and posteruptive hazards of maar–diatreme volcanoes. J Volcanol Geoth Res 159:285–312

    Article  Google Scholar 

  • Lorenz V, Kurszlaukis S (2007) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar–diatreme volcanoes. J Volcanol Geoth Res 159:4–32

    Article  Google Scholar 

  • Lorenz V (2008) Explosive maar-diatreme volcanism in unconsolidated water-saturated sediments and its relevance for diamondiferous pipes. Z Dtsch Gemmol Ges 57:41–60

    Google Scholar 

  • MacIntyre RM, Cliff RA, Chapman NA (1981) Geochronological evidence for phased volcanic activity in Fife and Caithness necks, Scotland. Trans R Soc Edinb Earth Sci 72:1–7

    Article  Google Scholar 

  • Mattsson HB, Tripoli BA (2011) Depositional characteristics and volcanic landforms in the Lake Natron–Engaruka monogenetic field, northern Tanzania. J Volcanol Geoth Res 203:23–34

    Article  Google Scholar 

  • McClintock M, White JDL (2006) Large phreatomagmatic vent complex at Coombs Hills, Antarctica: wet, explosive initiation of flood basalt volcanism in the Ferrar-Karoo LIP. Bull Volcanol 68:215–239

    Article  Google Scholar 

  • McClintock M, Ross PS, White JDL (2009) The importance of the transport system in shaping the growth and form of kimberlite volcanoes. Lithos 112S:465–472

    Article  Google Scholar 

  • Monaghan AA, Pringle MS (2004) High precision \(^{40}\text {Ar}/^{39}\text {Ar}\) geochronology of Carboniferous and Permian magmatism in Scotland. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe. Geological Society of London, vol 223, pp 219–241. London, Special Publications

  • Németh K, Martin U, Harangi S (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J Volcanol Geoth Res 111:111–135

    Article  Google Scholar 

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geoth Res 134:77–107

    Article  Google Scholar 

  • Pracht M, Timmerman MJ (2004) A Late Namurian (318 Ma) \(^{40}Ar/^{39}\) Ar age for kaersutite megacrysts from the Black Ball Head diatreme: an age limit for the Variscan deformation in South-West Ireland. Irish J Earth Sci 22:33–43

    Article  Google Scholar 

  • Rock NMS, Cooper C, Gaskarth JW (1986) Late Caledonian subvolcanic vents and associated dykes in the Kirkcudbright area, Galloway, South-West Scotland. Proc Yorks Geol Soc 46:29–37

    Article  Google Scholar 

  • Ross PS, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geoth Res 149:62–84

    Article  Google Scholar 

  • Ross PS, White JDL, Zimanowski B, Büttner R (2008) Multiphase flow above explosion sites in debris-filled volcanic vents: insights from analogue experiments. J Volcanol Geoth Res 178:104–112. doi:10.1016/j.jvolgeores.2008.01.013

    Article  Google Scholar 

  • Scarpati C, Perrotta A (2012) Erosional characteristics and behavior of large pyroclastic density currents. Geology 40:1035–1038. doi:10.1130/G33380.1

    Article  Google Scholar 

  • Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108:1199–1211

    Article  Google Scholar 

  • Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855

    Article  Google Scholar 

  • Sparks RSJ, Baker L, Brown R, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geoth Res 155:18–48. doi:10.1016/j.jvolgeores.2006.02.010

    Article  Google Scholar 

  • Stoppa F (1996) The San Venanzo maar and tuff ring, Umbria, Italy: eruptive behaviour of a carbonatite-melilitite volcano. Bull Volcanol 57:563–577

    Google Scholar 

  • Stoppa F, Lloyd FE, Rosatelli G (2003) \(CO_{2}\) as the propellant of carbonatite-kamafugite cognate pairs and the eruption of diatremic tuffisite. Period Mineral 72:205–222

    Google Scholar 

  • Suhr P, Goth K, Lorenz V, Suhr S (2006) Long lasting subsidence and deformation in and above maar-diatreme volcanoes—a never ending story. Z Dtsch Ges Geowiss 157:491–511

    Google Scholar 

  • Trewin NH (ed) (2002) The geology of Scotland. The Geological Society, London

  • Upton BGJ, Aspen P, Hinton RW (2003) Garnet pyroxenite xenoliths and pyropic megacrysts in Scottish alkali basalts. Scot J Geol 39:169–184

    Article  Google Scholar 

  • Upton BGJ, Stephenson D, Smedley PM, Wallis SM, Fitton JG (2004) Carboniferous and Permian magmatism in Scotland. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe. Geological Society of London, pp 195–218. London, Special Publications

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geoth Res 177:857–873

    Article  Google Scholar 

  • Valentine GA (2012) Shallow plumbing systems for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. J Volcanol Geoth Res 223–224:47–63

    Article  Google Scholar 

  • Valentine GA, White JD (2013) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology. doi:10.1130/G33411.1

  • Wagner PA (1914) The diamond fields of Southern Africa. Transvaal Leader, Johannesburg

    Google Scholar 

  • Walker GPL (1999) Basaltic volcanoes and volcanic systems. In: Houghton B, Rymer H, Stix J, McNutt S, Sigurdsson H (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 283–290

    Google Scholar 

  • Wallis SM (1989) Petrology and geochemistry of Upper Carboniferous-Lower Permian volcanic rocks in Scotland. PhD thesis, University of Edinburgh

  • Walters AL, Phillips JC, Brown RJ, Field M, Gernon T, Stripp G, Sparks RSJ (2006) The role of fluidisation in the formation of volcaniclastic kimberlite: grain size observations and experimental investigation. J Volcanol Geoth Res 155:119–137. doi:10.1016/j.jvolgeores.2006.02.005

    Article  Google Scholar 

  • Waters AC, Fisher RV (1971) Base surges and their deposits: Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614

    Article  Google Scholar 

  • White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258

    Article  Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geoth Res 201:1–29

    Article  Google Scholar 

  • Williams AF (1932) The genesis of diamond, vol 1–2. Benn, London

    Google Scholar 

  • Wilson L, Head JW (1981) Ascent and eruption of basaltic magma on the earth and moon. J Geophys Res 86(B4):2971–3001

    Article  Google Scholar 

  • Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (2004) Permo-Carboniferous magmatism and rifting in Europe: an introduction. In: Wilson M, Neumann ER, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe, vol 223, pp 1–10. Geological Society of London, Special Publications

  • Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions; II, evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413

    Article  Google Scholar 

  • Woolsey TS, McCallum ME, Schumm SA (1975) Phys Chem Earth 9:24–42

    Article  Google Scholar 

Download references

Acknowledgments

We dedicate this paper to Professor (Edward) Howel Francis, who has made many contributions to understanding the volcanic geology of the Fife diatremes. TG acknowledges generous support from the Timothy Jefferson Field Research Fund of the Geological Society of London, the Clough and Mykura Fund of the Geological Society of Edinburgh and the Curry Fund of the Geologist’s Association. We thank Thorvaldur Thordarson, Linda Kirstein and Steve Sparks for the stimulating discussions. We acknowledge thoughtful and detailed reviews by Volker Lorenz and Richard Brown and careful editorial handling by Pierre-Simon Ross. Special thanks go to Gary Hincks for producing the illustration shown in Fig. 14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Gernon.

Additional information

Editorial responsibility

P.-S. Ross

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gernon, T.M., Upton, B.G.J. & Hincks, T.K. Eruptive history of an alkali basaltic diatreme from Elie Ness, Fife, Scotland. Bull Volcanol 75, 704 (2013). https://doi.org/10.1007/s00445-013-0704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0704-7

Keywords

Navigation