Skip to main content
Log in

Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Weibull distribution between volume and square root of isopach area has been recently introduced for determining volume of tephra deposits, which is crucial to the assessment of the magnitude and hazards of explosive volcanoes. We show how the decay of the size of the largest lithics with the square root of isopleth area can also be well described using a Weibull function and how plume height correlates strongly with corresponding Weibull parameters. Variations of median grain size (Mdϕ) values with square root of area of the associated contours can be, similarly, well fitted with a Weibull function. Weibull parameters, derived for both the thinning of tephra deposits and the decrease of grain size (both maximum lithic diameter and Mdϕ), with a proxy for the distance from vent (e.g., square root of isoline areas) can be combined to classify the style of explosive volcanic eruptions. Accounting for the uncertainty in the derivation of eruptive parameters (e.g., plume height and volume of tephra deposits) is crucial to any classification of eruptive style and hazard assessment. Considering a typical uncertainty of 20 % for the determination of plume height, a new eruption classification scheme based on selected Weibull parameters is proposed. Ultraplinian, Plinian, Subplinian, and small–moderate explosive eruptions are defined on the ground of plume height and mass eruption rate. Overall, the Weibull fitting represents a versatile and reliable strategy for the estimation of both the volume of tephra deposits and the height of volcanic plumes and for the classification of eruptive style. Nonetheless, due to the typically large uncertainties (mainly due to availability of data, compilation of isopach and isopleth maps, and discrepancies from empirical best fits), plume height, volume, and magnitude of explosive eruptions cannot be considered as absolute values, regardless of the technique used. It is important that various empirical and analytical methods are applied in order to assess such an uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ablay GJ, Ernst GGJ, Marti J, Sparks RSJ (1995) The similar-to-2 Ka Subplinian eruption of Montana-Blanca, Tenerife. Bull Volcanol 57(5):337–355

    Google Scholar 

  • Andronico D, Cristaldi A, Scollo S (2008a) The 4–5 September 2007 lava fountain at South-East Crater of Mt Etna, Italy. J Volcanol Geotherm Res 173(3–4):325–328

    Article  Google Scholar 

  • Andronico D, Scollo S, Caruso S, Cristaldi A (2008b) The 2002–03 Etna explosive activity: tephra dispersal and features of the deposits. J Geophys Res. doi:10.1029/2007JB005126

    Google Scholar 

  • Arrighi S, Principe C, Rosi M (2001) Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63(2–3):126–150

    Article  Google Scholar 

  • Bertagnini A, Landi P, Santacroce R, Sbrana A (1991) The 1906 eruption of Vesuvius—from magmatic to phreatomagmatic activity through the flashing of a shallow depth hydrothermal system. Bull Volcanol 53(7):517–532

    Article  Google Scholar 

  • Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73(1):73–90

    Article  Google Scholar 

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418

    Article  Google Scholar 

  • Bonadonna C, Costa A (2013) Modeling of tephra sedimentation from volcanic plumes. In: Fagents S, Gregg T, Lopes R (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp 173–202

    Chapter  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grainsize distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108(B7):2340–2368

    Article  Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81(3–4):173–187

    Article  Google Scholar 

  • Bonadonna C, Phillips JC, Houghton BF (2005) Modeling tephra sedimentation from a Ruapehu weak plume eruption. J of Geophys Res. doi:10.1029/2004JB003515

    Google Scholar 

  • Bonadonna C, Genco R, Gouhier M, Pistolesi M, Cioni R, Alfano F, Hoskuldsson A, Ripepe M (2011) Tephra sedimentation during the 2010 Eyjafjallajokull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res-Sol Ea. doi:10.1029/2011JB008462

    Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Connor CB, Scollo S, Pioli L, Rosi M (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. B Volcanol. doi:10.1007/s00445-012-0680-3

    Google Scholar 

  • Bond A, Sparks RSJ (1976) The Minoan eruption of Santorini, Greece. J Geol Soc 132:1–16

    Article  Google Scholar 

  • Booth B, Croasdale R, Walker GPL (1978) A quantitative study of five thousand years of volcanism on Sao Miguel, Azores. Philos Trans R Soc Lond 288(1352):271–319

    Article  Google Scholar 

  • Branca S, Del Carlo P (2005) Types of eruptions of Etna volcano AD 1670–2003: implications for short-term eruptive behaviour. Bull Volcanol 67(8):732–742

    Article  Google Scholar 

  • Brown WK, Wohletz KH (1995) Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and the lognormal distributions. J Appl Phys 78:2758–2763

    Google Scholar 

  • Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992) Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A plinian deposit, Sao Miguel (Azores). Bull Volcanol 54:329–344

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1986) The 1982 eruptions of El Chichon volcano, Mexico (2): observations and numerical modelling of tephra-fall distribution. Bull Volcanol 48:127–141

    Article  Google Scholar 

  • Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 AD eruption of Vesuvius. Geol Soc Am Bull 99(2):303–314

    Article  Google Scholar 

  • Carey S, Sigurdsson H (1989) The intensity of Plinian eruptions. Bull Volcanol 51:28–40

    Article  Google Scholar 

  • Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Cashman K (2004) Volatile controls on ascent and eruption. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: Frontiers and challenges in geophysics: American Geophysical Union Geophysical Monograph 150, pp. 109–124

  • Cioni R, Sulpizio R (1998) Le sottopopolazioni granulometriche nei depositi vulcanici di caduta : l'eruzione delle pomici di Avellino (Vesuvio, Italia). Atti della societa toscana di scienze naturali residente in Pisa, memorie 105(serie A):81–97

  • Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178(3):331–346

    Article  Google Scholar 

  • Cioni R, Bertagnini A, Andronico D, Cole PD, Mundula F (2011) The 512 AD eruption of Vesuvius: complex dynamics of a small scale subplinian event. Bull Volcanol 73(7):789–810

    Article  Google Scholar 

  • Cole PD, Smith P, Komorowski JC, Alfano F, Bonadonna C, Stinton A, Christopher T, Odbert H, Loughlin S (2013, in press) Ash venting occurring both prior to and during lava extrusion at Soufrière Hills volcano, Montserrat, from 2005 to 2010. In: al. We (ed) The eruption of the Soufriere Hills Volcano, Montserrat, 2000–2010, Geological Society Memoir. Geological Society, London

  • Costantini L, Bonadonna C, Houghton BF, Wehrmann H (2009) New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua. Bull Volcanol 71(3):337–355

    Article  Google Scholar 

  • de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Deino A, di Cesare T, Di Vito MA, Fisher RV, Isaia R, Marotta E, Necco A, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano-Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):269–301

    Article  Google Scholar 

  • Degruyter W, Bonadonna C (2012) Improving on mass flow rate estimates of volcanic eruptions. Geophys Res Lett. doi:10.1029/2012GL052566

    Google Scholar 

  • Di Vito MA, Arienzo I, Braia G, Civetta L, D'Antonio M, Di Renzo V, Orsi G (2011) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy). Bull Volcanol 73(3):295–320

    Article  Google Scholar 

  • Eychenne J, Le Pennec J-L (2012) Sigmoidal particle density distribution in a subplinian scoria fall deposit. Bull Volcanol 74(10):2243–2249

    Article  Google Scholar 

  • Fierstein J, Hildreth W (1992) The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684

    Article  Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167

    Article  Google Scholar 

  • Fierstein J, Nathenson M (1993) Another look at the calculation of fallout tephra volumes—reply. Bull Volcanol 55(5):375–378

    Article  Google Scholar 

  • Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin, p 472

    Book  Google Scholar 

  • Folch A, Costa A, Basart S (2012) Validation of the FALL3D ash dispersion model using observations of the 2010 Eyjafjallajokull volcanic ash clouds. Atmos Environ 48:165–183

    Article  Google Scholar 

  • Garcia O, Bonadonna C, Marti J, Pioli L (2012) The 5,660 yBP Boqueron explosive eruption, Teide-Pico Viejo complex, Tenerife. Bull Volcanol 74(9):2037–2050

    Article  Google Scholar 

  • Gonzalez-Mellado AO, De la Cruz-Reyna S (2010) A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios. Nat Hazard Earth Syst 10(11):2241–2257

    Article  Google Scholar 

  • Gudmundsson MT, Thordarson T, Hoskuldsson A, Larsen G, Bjornsson H, Prata FJ, Oddsson B, Magnusson E, Hognadottir T, Petersen GN, Hayward CL, Stevenson JA, Jonsdottir I (2012) Ash generation and distribution from the April–May 2010 eruption of Eyjafjallajokull. Scientific Reports, Iceland. doi:10.1038/srep00572, 2

    Google Scholar 

  • Gurioli L, Harris AJL, Houghton BF, Polacci M, Ripepe M (2008) Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J Geophys Res-Sol Ea. doi:10.1029/2007JB005328

    Google Scholar 

  • Gurioli L, Harris AJL, Colò L, Bernard J, Favalli M, Ripepe M, Andronico D (2013, in press) Classification, landing distribution, and associated flight parameters for a bomb field emplaced during a single major explosion at Stromboli, Italy. Geology

  • Hildreth W, Drake RE (1992) Volcano Quizapu, Chilean Andes. Bull Volcanol 54:93–125

    Article  Google Scholar 

  • Holasek RE, Self S, Woods AW (1996) Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes. J Geophys Res-Sol Ea 101(B12):27635–27655

    Article  Google Scholar 

  • Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chemie Der Erde-Geochemistry 68(2):117–140

    Article  Google Scholar 

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145

    Google Scholar 

  • Koyaguchi T (1996) Volume estimation of tephra-fall deposits from the June 15, 1991, eruption of Mount Pinatubo by theoretical and geological methods. In: Newhall CG, Punongbayan RS (eds). Fire and mud. Seattle: University of Washington and Quezon City: Phivolcs, p 583–600

  • Legros F (2000) Minimum volume of a tephra fallout deposit estimated from a single isopach. J Volcanol Geotherm Res 96:25–32

    Google Scholar 

  • Longchamp C, Bonadonna C, Bachmann O, Skopelitis A (2011) Characterization of tephra deposits with limited exposure: the example of the two largest explosive eruptions at Nisyros volcano (Greece). Bull Volcanol 73(9):1337–1352

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Harris AJL, Delle Donne D (2009) Tracing the differences between Vulcanian and Strombolian explosions using infrasonic and thermal radiation energy. Earth Planet Sci Lett 279(3–4):273–281

    Article  Google Scholar 

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66(8):735–748

    Article  Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186(1–2):10–21

    Article  Google Scholar 

  • Mueller S, Scheu B, Kueppers U, Spieler O, Richard D, Dingwell DB (2011) The porosity of pyroclasts as an indicator of volcanic explosivity. J Volcanol Geotherm Res 203(3–4):168–174

    Article  Google Scholar 

  • Newhall CG, Punongbayan RS (eds) (1996) Fire and mud—eruptions and lahars of Mount Pinatubo. Philippine Institute of Volcanology and Seismology and the University of Washington Press, Philippines, p 1126p

    Google Scholar 

  • Newhall CG, Self S (1982) The Volcanic Explosivity Index (VEI)—an estimate of explosive magnitude for historical volcanism. J Geophys Res Oceans Atm 87:1231–1238

    Article  Google Scholar 

  • Norini G, De Beni E, Andronico D, Polacci M, Burton M, Zucca F (2009) The 16 November 2006 flank collapse of the south-east crater at Mount Etna Italy: study of the deposit and hazard assessment. J Geophys Res-Sol Earth. doi:10.1029/2008JB005779

    Google Scholar 

  • Oddsson B, Gudmundsson MT, Larsen G, Karlsdottir S (2012) Monitoring of the plume from the basaltic phreatomagmatic 2004 Grimsvotn eruption—application of weather radar and comparison with plume models. Bull Volcanol 74(6):1395–1407

    Article  Google Scholar 

  • Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery DA, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69(7):769–784

    Article  Google Scholar 

  • Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geo Res 140:273–294

    Article  Google Scholar 

  • Pioli L, Azzopardi BJ, Cashman KV (2009) Controls on the explosivity of scoria cone eruptions: magma segregation at conduit junctions. J Volcanol Geotherm Res 186(3–4):407–415

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15

    Article  Google Scholar 

  • Pyle DM (1990) New estimates for the volume of the Minoan eruption. In: Hardy DA (ed) Thera and the Aegean World. The Thera Foundation, London, pp 113–121

    Google Scholar 

  • Pyle DM (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geotherm Res 69(3–4):379–382

    Article  Google Scholar 

  • Pyle DM (1999) Widely dispersed Quaternary tephra in Africa. Global Planet Change 21:95–112

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, New York, p 1417

    Google Scholar 

  • Ripepe M, Rossi M, Saccorotti G (1993) Image-processing of explosive activity at Stromboli. J Volcanol Geotherm Res 54(3–4):335–351

    Article  Google Scholar 

  • Rose WI (1993) Comment on another look at the calculation of fallout tephra volumes. Bull Volcanol 55(5):372–374

    Article  Google Scholar 

  • Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186(1–2):32–39

    Article  Google Scholar 

  • Rosi M, Paladio-Melosantos ML, Di Muro A, Leoni R, Bacolcol T (2001) Fall vs flow activity during the 1991 climactic eruption of Pinatubo volcano (Philippines). Bull Volcanol 62:549–566

    Article  Google Scholar 

  • Rosi M, Pistolesi M, Bertagnini A, Landi P, Pompilio M, Di Roberto A (2013) Stromboli Volcano, Aeolian Islands (Italy): present eruptive activity and hazard. In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) Geology of the Aeolian Islands (Italy). Geological Society of London, Memoirs.

  • Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophy Res-Sol Ea. doi:10.1029/2011JB008494

    Google Scholar 

  • Schneider D, Rose W, Coke L, Bluth G (1999) Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR. J Geophys Res 104(D4):4037–4050

    Article  Google Scholar 

  • Scollo S, Del Carlo P, Coltelli M (2007) Tephra fallout of 2001 Etna flank eruption: analysis of the deposit and plume dispersion. J Volcanol Geotherm Res 160(1–2):147–164

    Article  Google Scholar 

  • Self S, Sparks RSJ (1978) Characteristics of pyroclastic deposits formed by the interaction of silicic magma and water. Bulletin Volcanologique 41:196–212

    Article  Google Scholar 

  • Self S, Sparks RSJ, Booth B, Walker GPL (1974) 1973 Heimaey Strombolian scoria deposit, Iceland. Geol Mag 3(6):539–548

    Article  Google Scholar 

  • Self S, Rampino MR, Newton MS, Wolff JA (1984) Volcanological study of the great Tambora eruption of 1815. Geology 12(11):659–663

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos Trans R Soc Lond 229:241–273

    Google Scholar 

  • Sparks RSJ, Bursik MI, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes. 2. Controls on thickness and grain-size variations of tephra fall deposits. Bull Volcanol 54(8):685–695

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, Chichester, p 574

    Google Scholar 

  • Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145(3–4):315–336

    Article  Google Scholar 

  • Sulpizio R, Cioni R, Di Vito MA, Mele D, Bonasia R, Dellino P (2010) The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP) part I: stratigraphy, compositional variability and eruptive dynamics. Bull Volcanol. doi:10.1007/s00445-009-0339-x

    Google Scholar 

  • Thorarinsson S (1954) The eruptiom of Hekla 1947–1948. In: The tephra fall from Hekla. Vis Islendinga, Reykjavik, p 68

    Google Scholar 

  • Tsunematsu K (2012) New numerical solutions for the description of volcanic particle dispersal. PhD Dissertation; University of Geneva

  • Volentik ACM, Bonadonna C, Connor CB, Connor LJ, Rosi M (2010) Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador). J Volcanol Geotherm Res 193(1–2):117–136

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446

    Article  Google Scholar 

  • Walker GPL (1980) The Taupo Pumice: product of the most powerful known (Ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94

    Article  Google Scholar 

  • Walker GPL (1981a) Characteristics of two phreatoplinian ashes, and their water-flushed origin. J Volcanol Geotherm Res 9:395–407

    Article  Google Scholar 

  • Walker GPL (1981b) The Waimihia and Hatepe plinian deposits from the rhyolitic Taupo Volcanic Centre. New Zeal J Geol Geop 24:305–324

    Google Scholar 

  • Walker GPL, Croasdale R (1971) Two plinian-type eruptions in the Azores. J Geol Soc Lond 127:17–55

    Article  Google Scholar 

  • Walker GPL, Self S, Wilson L (1984) Tarawera, 1886, New Zealand—a basaltic Plinian fissure eruption. J Volcanol Geotherm Res 21:61–78

    Article  Google Scholar 

  • Wehrmann H, Bonadonna C, Freundt A, Houghton BF, Kutterolf S (2006) Fontana tephra: a basaltic Plinian eruption in Nicaragua. Geological Society of America Special Paper 412: Volcanic Hazards in Central America. pp 209–223

  • Williams SN, Self S (1983) The October 1902 Plinian eruption of Santa Maria volcano, Guatemala. J Volcanol Geotherm Res 16:33–56

    Article  Google Scholar 

  • Wilson L, Walker GPL (1987) Explosive volcanic-eruptions.6. Ejecta dispersal in Plinian eruptions—the control of eruption conditions and atmospheric properties. Geophys J Roy Astron Soc 89(2):657–679

    Article  Google Scholar 

  • Wright JV, Smith AL, Self S (1980) A working terminology of pyroclastic deposits. J Volcanol Geotherm Res 8(2–4):315–336

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to L. Pioli and R. Cioni for discussion of an earlier version of the manuscript. A. Costa was funded by the Italian Dipartimento della Protezione Civile in the ambit of the Project “V1”, agreement INGV-DPC 2012–2013. R. Sulpizio, an anonymous reviewer and the Associate Editor J. Gardner are thanked for constructive comments that have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanza Bonadonna.

Additional information

Editorial responsibility: J.E. Gardner

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

XLSX 168 KB

ESM 2

(PDF 105 KB)

Appendices

Appendix 1

According to the model of Bursik et al. (1992), based on the assumptions that i) the atmosphere in which the eruptive plume develops is continuously stratified; ii) the wind field at the spreading current level is constant; iii) the volume flux in the spreading current is constant with distance (i.e., there is no air entrainment within the spreading current); iv) particles are vertically well mixed by turbulence in the spreading current; v) the concentration of particles in the cross-wind direction of the spreading current has a Gaussian distribution (inherited from the eruption column); vi) particles sediment from the bottom of the spreading current where turbulence diminishes and the vertical velocity is negligible, the total mass of particles, Mi (kg), of a given size fraction (having a terminal vi) carried by the spreading current beyond a certain distance x is:

$$ {M}_i\left(x;{v}_i\right)={M}_0\left({v}_i\right) \exp \left(-{\displaystyle {\int}_{x_{\mathrm{O}}}^x\frac{v_iw}{Q} dx}\right) $$
(A.1)

where M 0 (v i ) is the initial mass of particles injected into the current at Hb having terminal velocity v i , w is the maximum cross-wind width of the current at the source, Q is the volumetric flow rate into the current at the neutral buoyancy level, and x0 is the plume-corner position. For sake of simplicity, in the derivation, we will not consider effects of wind and assume that the distance x is directly proportional to the square root of the isopach areas. Therefore, considering the entire range of particle terminal velocities, the total mass carried by the spreading current beyond a certain distance x is:

$$ {M}_{Tot}(x)={\displaystyle {\int}_{v_{min}}^{v_{max}}{M}_i\left(x;{v}_i\right)d{v}_i={\displaystyle {\int}_{v_{min}}^{v_{max}}{M}_0\left({v}_i\right) \exp \left(-{\displaystyle {\int}_{x_{\mathrm{O}}}^x\frac{v_iw}{Q} dx}\right)d{v}_i}} $$
(A.2)

According to the first mean value theorem for integration there exist v  ∈ (v min ,v max ) such that:

$$ {M}_{Tot}(x)= \exp \left(-{\displaystyle {\int}_{x_0}^x\frac{v_{\ast }w}{Q} dx}\right){\displaystyle {\int}_{v_{min}}^{v_{max}}{M}_0\left({v}_i\right)d{v}_i=}{M}_{0, tot} \exp \left(-{\displaystyle {\int}_{x_0}^x\frac{v_{\ast }w}{Q} dx}\right) $$
(A.3)

Physically v * would represent an effective mean terminal velocity of the mixture particles up to the distance x. If we make the general assumption that v * w/Q follows a power law with the distance such that:

$$ {v}_{\ast }w/Q=k{x}^m $$
(A.4)

for a generic positive m (generalizing the assumptions made by Bursik et al. 1992), we have:

$$ {M}_{Tot}(x)={M}_{0, tot} \exp \left[-\frac{k}{m+1}\left({x}^{m+1}-{x}_0^{m+1}\right)\right]\equiv {M}_{0,\mathrm{tot}} \exp \left[-C\left({x}^n-{x}_0^n\right)\right] $$
(A.5)

with \( C=\frac{k}{m+1}\mathrm{and}\kern0.5em n=m+1 \) Hence the mass accumulated on the ground till the distance x can be written as:

$$ {M}_G(x)={M}_{0, tot}\left\{1- \exp \left[-C\left({x}^n-{x}_0^n\right)\right]\right\}={\rho}_{dep}\;{V}_{0, tot}\left\{1- \exp \left[-C\left({x}^n-{x}_0^n\right)\right]\right\} $$
(A.6)

that at distances where x/x0 ≫ 1 is formally equivalent to the Weibull distribution empirically proposed by Bonadonna and Costa (2012):

$$ {M}_G(x)={\rho}_{dep}\;V(x)={\rho}_{dep}\;{V}_{0, tot}\left\{1- \exp \left[-{\left(x/\lambda \right)}^n\right]\right\} $$
(A.7)

with C = (1/λ)n Note that the same derivation can be made for each given size fraction having a terminal v i , that implies that mass distribution of each particle accumulated on the ground class follows a Weibull distribution.

Appendix 2

Table 4 Weibull parameters associated with the eruptions considered in our study that are not reported in Table 1 of main text. θ th, θ ML, and θ Mdϕ are expressed in centimeter, while n th, n ML, and n Mdϕ are dimensionless. References are in caption of Table 1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonadonna, C., Costa, A. Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75, 742 (2013). https://doi.org/10.1007/s00445-013-0742-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0742-1

Keywords

Navigation