Skip to main content
Log in

Sigmoidal particle density distribution in a subplinian scoria fall deposit

  • Short Scientific Communication
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

A general expression to describe particle density distribution in tephra fall deposits is essential to improve fallout tephra mass determination and numerical modelling of tephra dispersion. To obtain particle density distributions in tephra fall deposits, we performed high-resolution componentry and particle density analyses on samples from the 2006 subplinian eruption of Tungurahua volcano in Ecuador. Six componentry classes, including pumice and scoria, have been identified in our sample collection. We determined the class of 300 clasts in each 0.5ϕ fractions from −4.5ϕ to 3.5ϕ and carried out water pycnometry density measurements on selected size fractions. Results indicate that the mean particle density increases with ϕ up to a plateau of ~2.6 g/cm3 for clasts finer than 1.5ϕ. The density of scoria and pumice increases between −3 and 1ϕ, while dense particle density is sub-constant with grainsize. We show that the mean particle density μ of the vesicular fractions is a function of grainsize i (ϕ scale) given by a sigmoidal law: \( \mu (i)={{{K+\beta }} \left/ {{\left( {1+\alpha {e^{-ri }}} \right)}} \right.} \), where K, β, α and r are constants. These sigmoidal distributions can be used to determine accurately the load of each componentry class and should be applicable to many tephra deposits and for modelling purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alfano F, Bonadonna C, Delmelle P, Costantini L (2011) Insights on settling velocity from morphological observations. J Volcanol Geotherm Res 208:86–98. doi:10.1016/j.jvolgeores.2011.09.013

    Article  Google Scholar 

  • Andronico D, Scollo S, Cristaldi A, Ferrari F (2009) Monitoring ash emission episodes at Mt Etna: The 16 November 2006 case study. J Volcanol Geotherm Res 180:123–134. doi:10.1016/j.jvolgeores.2008.10.019

    Article  Google Scholar 

  • Araña-Salinas L, Siebe C, Macías JL (2010) Dynamics of the ca. 4965yr 14C BP "Ochre Pumice" Plinian eruption of Popocatépetl volcano, México. J Volcanol Geotherm Res 192:212–231. doi:10.1016/j.jvolgeores.2010.02.022

    Article  Google Scholar 

  • Arrighi S, Principe C, Rosi M (2001) Violent Strombolian and subPlinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63:126–150

    Article  Google Scholar 

  • Barsotti S, Neri A (2008) The VOL-CALPUFF model for atmospheric ash dispersal: 2. Application to the weak Mount Etna plume of July 2001. J Geophys Res 113:B03209. doi:10.1029/2006JB004624

    Article  Google Scholar 

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108:B72340. doi:10.1029/2002JB002034

    Article  Google Scholar 

  • Clark SP (1966) Handbook of physical constants. Geological society of America, inc., New-York, 587 pp

  • Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647. doi:10.1016/j.epsl.2005.11.019

    Article  Google Scholar 

  • Eychenne J, Le Pennec JL, Troncoso L, Gouhier M, Nedelec JM (2012) Causes and consequences of bimodal grainsize distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74:187–205. doi:10.1007/s00445-011-0517-5

    Article  Google Scholar 

  • Folch A, Cavazzoni C, Costa A, Macedonio G (2008) An automatic procedure to forecast tephra fallout. J Volcanol Geotherm Res 177:767–777. doi:10.1016/j.jvolgeores.2008.01.046

    Article  Google Scholar 

  • Gouhier M, Donnadieu F (2008) Mass estimations of ejecta from Strombolian explosions by inversion of Doppler radar measurements. J Geophys Res 113:B10202. doi:10.1029/2007JB005383

    Article  Google Scholar 

  • Heiken G, Wohletz K (1985) Volcanic Ash. University of California Press, 246 pp.

  • Kelfoun K, Samaniego P, Palacios P, Barba D (2009) Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71:1057–1075

    Article  Google Scholar 

  • Le Pennec JL, Ruiz AG, Ramon P, Palacios E, Mothes P, Yepes H (2012) Impact of tephra falls on Andean communities: The influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador. J Volcanol Geotherm Res 217–218:91–103. doi:10.1016/j.jvolgeores.2011.06.011

    Article  Google Scholar 

  • Manville V, Segschneider B, White JDL (2002) Hydrodynamic behaviour of Taupo 1800a pumice: implications for the sedimentology of remobilised pyroclastic deposits. Sedimentology 49:955–976

    Article  Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman KV, Wallace P, Rosi M, Granados HD (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943-1952 (Mexico). Earth Planet Sci Lett 271:359–368

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic, pp 263–269

  • Samaniego P, Le Pennec JL, Robin C, Hidalgo S (2011) Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua. J Volcanol Geotherm Res 199:69–84. doi:10.1016/j.jvolgeores.2010.10.010

    Article  Google Scholar 

  • Scollo S, Del Carlo P, Coltelli M (2007) Tephra fallout of 2001 Etna flank eruption: analysis of the deposit and plume dispersion. J Volcanol Geotherm Res 160:147–164. doi:10.1016/j.jvolgeores.2006.09.007

    Article  Google Scholar 

  • Taddeucci J, Pompilio M, Scarlato P (2002) Monitoring the explosive activity of the July–August 2001 eruption of Mt. Etna (Italy) by ash characterization. Geophys Res Lett 29:1230. doi:10.1029/2001GL014372

    Article  Google Scholar 

  • Valade S, Donnadieu F (2011) Ballistics and ash plumes discriminated by Doppler radar. Geophys Res Lett 38:L22301. doi:10.1029/2011GL049415

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of a PhD project by J Eychenne and has been completed in the context of a project entitled “Volcanic hazards associated with open-system activity” (Action Incitative of IRD). L Gailler and A Delcamp carried out a great part of the tedious grain counting and pycnometry analysis, and are warmly acknowledged. The authors thank C Bonnadona and J-C Komorowski for comments on an earlier version of the manuscript. Reviews of the manuscript by V Manville and A Durant and editorial handling by J White are warmly acknowledged. This is Laboratory of Excellence ClerVolc contribution no. 32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Eychenne.

Additional information

Editorial responsibility: V. Manville

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eychenne, J., Le Pennec, JL. Sigmoidal particle density distribution in a subplinian scoria fall deposit. Bull Volcanol 74, 2243–2249 (2012). https://doi.org/10.1007/s00445-012-0671-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0671-4

Keywords

Navigation