Skip to main content
Log in

Volcán Quizapu, Chilean Andes

  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Quizapu is a flank vent of the basalt-to-rhyodacite Holocene stratocone, Cerro Azul, and lies at the focus of a complex Quaternary volcanic field on the Andean volcanic front. The Quizapu vent originated in 1846 when 5 km3 of hornblende-dacite magma erupted effusively with little accompanying tephra. Between ∼ 1907 and 1932, phreatic and strombolian activity reamed out a deep crater, from which 4 km3 of dacite magma identical to that of 1846 fed the great plinian event of 10–11 April 1932. Although a total of >9 km3 of magma was thus released in 86 years, there is no discernible subsidence. As the pre-plinian crater was lined by massive lavas, 1932 enlargement was limited and the total plinian deposit contains only ∼ 0.4 wt % lithics. Areas of 5-cm and 1-cm isopachs for compacted 1932 fallout are about half of those estimated in the 1930's, yielding a revised ejecta volume of ∼9.5 km3. A strong inflection near the 10-cm isopach (downwind ∼110 km) on a plot of log Thickness vs Area1/2 reflects slow settling of fine plinian ash — not of coignimbrite ash, as the volume of pyroclastic flows was trivial (<0.01 km3). About 17 vol.% of the fallout lies beyond the 1-cm isopach, and ∼ 82 wt% of the ejecta are finer than 1 mm. A least 18 hours of steady plinian activity produced an exceptionally uniform fall deposit. Observed column height (27–30 km) and average mass eruption rate (1.5x108 kg/s) compare well with values for height and peak intensity calculated from published eruption models. The progressive “aeolian fractionation” of downwind ash (for which Quizapu is widely cited) is complicated by the large compositional range of 1932 juvenile pumice (52–70% SiO2). The eruption began with andesitic scoria and ended with basaltic scoria, but >95% of the ejecta are dacitic pumice (67–68% SiO2); minor andesitic scoria and frothier rhyodacite pumice (70% SiO2) accompanied the dominant dacite. Phenocrysts (pl>hb∼opx>mt>ilm∼cpx) are similar in both abundance and composition in the 1846 (effusive) and 1932 (plinian) dacites. Despite the contrast in mode of eruption, bulk compositions are also indistinguishable. The only difference so far identified is a lower range of δ D values for 1846 hornblende, consistent with pre-eruptive degassing of the effusive batch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. Am Mineral 73:714–726

    Google Scholar 

  • Bacon CR (1983) Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, USA. J Volcanol Geotherm Res 18:57–115

    Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91:6091–6112

    Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater lake, Oregon. Contrib Mineral Petrol 98:224–256

    Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. Am Mineral 73:57–61

    Google Scholar 

  • Bacon CR, Adami LH, Lanphere MA (1989) Direct evidence for the origin of low-18O silicic magmas: Quenched samples of a magma chamber's partially fused granitoid walls, Crater Lake, Oregon. Earth Planet Sci Lett 96:199–208

    Google Scholar 

  • Bacon CR, Newman S, Stolper EM (1988) Preeruptive volatile content, climactic eruption of Mount Mazama, Crater Lake, Oregon. Geol Soc Am Abst Prog 20/7:A248

  • Blake S, Ivey GN (1986) Magma mixing and the dynamics of withdrawal from stratified reservoirs. J Volcanol Geotherm Res 27:153–178

    Google Scholar 

  • Bobillier C (1932) La erupción del Volcán Quizapu en abril de 1932. Bol Serv Sismol Univ Chile 22:33–39

    Google Scholar 

  • Bobillier C (1934) Erupciones volcánicas en Chile. Bull Volcanol 23–26:153–178. [Author's name incorrectly given as Mr. Robillier]

    Google Scholar 

  • Brazier S, Sparks RSJ, Carey SN, Sigurdsson H, Westgate JA (1983) Bimodal grain size distribution and secondary thickening in air-fall ash layers. Nature 301:115–119

    Google Scholar 

  • Bruggen J (1933) Der Aschen- und Bimsstein-Ausbruch des Vulkans Quizapu in der chilenischen Kordillere. Z Vulkanol 15:100–104

    Google Scholar 

  • Bruggen J (1950) Fundamentos de la Geología de Chile. Instituto Geográfico Militar, Santiago, 374 p

    Google Scholar 

  • Bustos Navarrete J (1932) Die letzte vulkanische Krise. Der Ausbruch des Quizapu im April dieses Jahres. Andina (Zeitschrift für Naturfreunde und Wanderer, Mitteilungen der Sektion Chile) 10/2:24–26

    Google Scholar 

  • Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St Helens volcano. J Geophys Res 87:7061–7072

    Google Scholar 

  • Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius. Geol Soc Am Bull 99:303–314

    Google Scholar 

  • Carey S, Sigurdsson H (1989) The intensity of plinian eruptions. Bull Volcanol 51:28–40

    Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispesal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Google Scholar 

  • Dartayet M (1932) Observacíon de la lluvia de cenizas del 11 de abril de 1932 en La Plata. Rev Astron (Buenos Aires) 4:183–187

    Google Scholar 

  • Dobson PF, Epstein S, Stolper EM (1989) Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim Cosmochim Acta 53:2723–2730

    Google Scholar 

  • Domeyko I (1903) Jeolójia, vol 5. Imprenta Cervantes, Santiago

    Google Scholar 

  • Drake RE (1976) Chronology of Cenozoic igneous and tectonic events in the central Chilean Andes — latitudes 35°30′ to 36°S. J Volcanol Geotherm Res 1:265–284

    Google Scholar 

  • Druitt TH, Bacon CR (1989) Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 101:245–259

    Google Scholar 

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602

    Google Scholar 

  • Fierstein J, Hildreth W (1991) The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol (in review)

  • Fierstein J, Nathenson M (1991) Another look at the calculation of fallout tephra volumes. Bull Volcanol (in press)

  • Friedlaender J (1933) Der grosse Ausbruch in der chilenisch-argentinischen Kordillere in April 1932. Z Vulkanol 15:116–123

    Google Scholar 

  • Frost BR, Lindsley DH, Andersen DJ (1988) Fe-Ti oxide-silicate equilibria: Assemblages with fayalitic olivine. Am Mineral 73:727–740

    Google Scholar 

  • Fuenzalida H (1941) Distribución de los volcanes del grupo de los Descabezados. Bol Museo Nac Hist Nat (Santiago) 19:19–30

    Google Scholar 

  • Fuenzalida H (1942) El Volcán Descabezado Grande. Bol Museo Nac Hist Nat (Santiago) 20:35–50

    Google Scholar 

  • Fuenzalida H (1943) El Cerro Azul y el Volcán Quizapu. Bol Museo Nac Hist Nat (Santiago) 21:37–53

    Google Scholar 

  • Godoy P (1984) Geología del Grupo Volcanico Descabezado Grande — Los Hornitos. Taller de Titulo II, GL-698, Univ Chile (Santiago), Depto Geol Geofis, 125 p

  • González Ferrán O, Vergara M (1962) Reconocimiento geológico de la Cordillera de los Andes entre los paralelos 35° y 38° latitud sur. Univ Chile, Inst Geol, Publ 24, 121 p

  • Grunder AL (1987) Low δ18 silicic volcanic rocks at the Calabozos caldera complex, southern Andes. Contrib Mineral Petrol 95:71–81

    Google Scholar 

  • Grunder AL, Mahood GA (1988) Physical and chemical models of zoned silicic magmas: The Loma Seca Tuff and Calabozos caldera, Southern Andes. J Petrology 29:831–867

    Google Scholar 

  • Hildreth W (1987) New perspectives on the eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. Bull Volcanol 49:680–693

    Google Scholar 

  • Hildreth W (1991) Timing of caldera collapse at Mount Katmai in response to magma withdrawal toward Novarupta. Geophys Res Lett, in press

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Hildreth W, Grunder AL, Drake RE (1984) The Loma Seca Tuff and the Calabozos caldera: a major ash-flow and caldera complex in the southern Andes of central Chile. Geol Soc Am Bull 95:45–54

    Google Scholar 

  • Huebner JS, Sato M (1970) The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers. Am Mineral 55:934–952

    Google Scholar 

  • Jones HS (1932) The Andean eruption and sunset and sunrise glows in South Africa. Nature 130:279

    Google Scholar 

  • Kittl E (1933) Estudio sobre los fenómenos volvánicos y material caído durante la erupción del grupo del “Descabezado” en el mes be abril de 1932. Anal Museo Nac Hist Nat (Buenos Aires) 37:321–364

    Google Scholar 

  • Kobayashi T, Hayakawa Y, Aramaki S (1983) Thickness and grain-size distribution of the Osumi pumice fall deposit from the Aira caldera. Bull Volcanol Soc Japan 28:129–139

    Google Scholar 

  • Kreutz S, Jurek M (1932) Cendres volcaniques tombées en Avril 1932 à Buenos Aires. Polskiego Towarzystwo Geologiczna Rocznik (Krakow) 8:316–330

    Google Scholar 

  • Larsson W (1937) Vulkanische Asche vom Ausbruch des chilenischen Vulkans Quizapu (1932) in Argentina gesammelt. Geol Inst Upsala Bull 26:27–52

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Amer Mineral 68:477–493

    Google Scholar 

  • Lirer L, Pescatore T, Booth B, Walker GPL (1973) Two plinian pumice-fall deposits from Somma-Vesuvius, Italy. Geol Soc Am Bull 84:759–772

    Google Scholar 

  • Lunkenheimer F (1932) La erupción del Quizapu en abril de 1932. Rev Astron (Buenos Aires) 4:173–182

    Google Scholar 

  • Maass A (1932) 14 Tage in der Kordillere von Talca, der Zone der tätigen Vulkane. Andina (Zeitschrift für Naturfreunde und Wanderer, Mitteilungen der Sektion Chile) 10/2:27–37

    Google Scholar 

  • Merzbacher C, Eggler DH (1984) A magmatic geohygrometer: applications to Mount St Helens and other dacitic magmas. Geology 12:587–590

    Google Scholar 

  • Moreno Roa H (1982) Descabezado Grande Volcano, Central Chile. SEAN Bulletin (Smithsonian Inst) 7/3:17

    Google Scholar 

  • Newman S, Epstein S, Stolper E (1988) Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 A.D. eruption of the Mono Craters, California: Contraints on degassing phenomena and initial volatile content. J Volcanol Geotherm Res 35:75–96

    Google Scholar 

  • Pyle DM (1989) The thickness, volume, and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Google Scholar 

  • Reck H (1933) Der Ausbruch des Quizapu vom 10–11 April 1932 und seine Folgen. Naturwissenschaften 21:617–624

    Google Scholar 

  • Riso Patrón L (1917) Las exploraciones del señor Mauricio Vogel en las cordilleras del Centro. Rev Chilena d Hist Geogr 23:371–381

    Google Scholar 

  • Rutherford MJ, Devine JD (1988) The May 18, 1980, eruption of Mount St Helens, 3. Stability and chemistry of amphibole in the magma chamber. J Geophys Res 93:11949–11959

    Google Scholar 

  • Sarna-Wojcicki AM, Shipley S, Waitt R Jr, Dzurisin D, Wood S (1981) Areal distribution, thickness, mass, volume, and grainsize of airfall ash from the six major eruptions of 1980. US Geol Surv Prof Pap 1250:577–600

    Google Scholar 

  • Sigurdsson H, Carey S, Cornell W, Pescatore T (1985) The eruption of Vesuvius in 79 A.D. Nat Geogr Res 1:332–387

    Google Scholar 

  • Simkin T, Siebert L, McClelland L, Bridge D, Newhall C, Latter JH (1981) Volcanoes of the World. Smithsonian Inst, Washington, 233 p

    Google Scholar 

  • Sorem RK (1982) Volcanic ash clusters: Tephra rafts and scavengers. J Volcanol Geotherm Res 13:63–71

    Google Scholar 

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15

    Google Scholar 

  • Stormer JC (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Am Mineral 68:586–594

    Google Scholar 

  • Suzuoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240

    Google Scholar 

  • Taylor HP Jr, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP Jr, O'Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:227–271

  • Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306:541–545

    Google Scholar 

  • Vogel M (1913) Reisebilder aus den Hochkordilleren der Provinz Talca, speziell aus der Zone des tätigen Vulkans. Verth Dtsch Wissen Vereins zu Santiago de Chile 6:263–313

    Google Scholar 

  • Vogel M (1920) Reisebilder aus den Hochkordilleren der Provinz Talca: Ergebnisse meiner dritten Reise 1916. Verh Dtsch Wissen Vereins zu Santiago de Chile 6:454–480

    Google Scholar 

  • Vogel M (1933) Bericht über vulkanische Vorgänge in Mittelchile und en angrenzenden Provinzen Argentiniens, besonders über die Vulkane Descabezado Grande und Cerro Azul (Quizapu). Z Vulkanol 15:105–115

    Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions — a new classification scheme. Geol Rundsch 62:431–446

    Google Scholar 

  • Walker GPL (1980) The Taupo pumice: Product of the most powerful known (ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94

    Google Scholar 

  • Walker GPL (1981a) Plinian eruptions and their products. Bull Volcanol 44:223–240

    Google Scholar 

  • Walker GPL (1981b) The Waimihia and Hatepe plinian deposits from the rhyolitic Taupo volcanic centre. NZ J Geol Geophys 24:305–324

    Google Scholar 

  • Walker GPL, Croasdale R (1971) Two plinian-type eruptions in the Azores. J Geol Soc London 127:17–55

    Google Scholar 

  • Wilson L, Walker GPL (1987) Explosive volcanic eruptions — VI. Ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J R Astron Soc 89:657–679

    Google Scholar 

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions — IV. The control of magma properties and conduit geometry on eruption column behavior. Geophys J R Astron Soc 63:117–148

    Google Scholar 

  • Williams S, Self S (1983) The October 1902 plinian eruption of Santa María volcano, Guatemala. J Volcanol Geotherm Res 16:33–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildreth, W., Drake, R.E. Volcán Quizapu, Chilean Andes. Bull Volcanol 54, 93–125 (1992). https://doi.org/10.1007/BF00278002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00278002

Keywords

Navigation