Skip to main content
Log in

Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory

  • Community Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In a greenhouse experiment using Plantago lanceolata, plants grown with different arbuscular mycorrhizal (AM) fungal species differed in constitutive levels of chemical defense depending on the species of AM fungi with which they were associated. AM fungal inoculation also modified the induced chemical response following herbivory by the specialist lepidopoteran herbivore Junonia coenia, and fungal species varied in how they affected induced responses. On average, inoculation with AM fungi substantially reduced the induced chemical response as compared with sterile controls, and inoculation with a mixture of AM fungi suppressed the induced response of P. lanceolata to herbivory. These results suggest that AM fungi can exert controlling influence over plant defensive phenotypes, and a portion of the substantial variation among experimental tests of induced chemical responses may be attributable to AM fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler LS, Schmitt J, Bowers MD (1995) Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia (Berlin) 101:75–85

    Article  Google Scholar 

  • Barton KE (2007) Early ontogenetic patterns in chemical defense in Plantago (Plantaginaceae): genetic variation and trade-offs. Am J Bot 94:56–66

    Article  CAS  Google Scholar 

  • Bennett AE (2005) Mechanisms underlying complex interactions between plants, herbivores, and arbuscular mycorrhizal fungi. In: Biology, Ph.D. Indiana University, Bloomington, p 136

  • Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–218

    Article  PubMed  Google Scholar 

  • Bennett AE, Bever JD (2009) Trade-offs between AM fungal competitive ability and host growth promotion in Plantago lanceolata. Oecologia (in press)

  • Bennett AE, Alers-Garcia J, Bever JD (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am Nat 167:141–152

    Article  PubMed  Google Scholar 

  • Bever JD (2002) Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc R Soc Lond B Biol Sci 269:2595–2601

    Article  Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71–82

    Article  Google Scholar 

  • Biere A, Marak HB, van Damme JMM (2004) Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs? Oecologia 140:430–441

    Article  PubMed  Google Scholar 

  • Bobbitt JM, Segebarth KP (1969) Iridoid glycosides and similar substances. In: Taylor WI, Battersby AR (eds) Cyclopentanoid terpene derivatives. Marcel Dekker, New York, pp 1–145

    Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542

    Article  Google Scholar 

  • Bowers MD (1991) Iridoid glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, second edition, vol. I: the chemical participants. Xi + 468p. Academic Press, Inc, San Diego, pp 297–325

    Google Scholar 

  • Bowers MD, Collinge SK (1992) Fate Of iridoid glycosides in different life stages of the buckeye, Junonia-Coenia (Lepidoptera, Nymphalidae). J Chem Ecol 18:817–831

    Article  CAS  Google Scholar 

  • Bowers MD, Puttick GM (1986) Fate of ingested iridoid glycosides in lepidopteran herbivores. J Chem Ecol 12:169–178

    Article  CAS  Google Scholar 

  • Bowers MD, Stamp NE (1992) Chemical variation within and between individuals of Plantago lanceolata Plantaginaceae. J Chem Ecol 18:985–995

    Article  CAS  Google Scholar 

  • Bowers MD, Stamp NE (1993) Effects of plant age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74:1778–1791

    Article  Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650

    Article  CAS  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses—a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285

  • Darrow K, Bowers MD (1999) Effects of herbivore damage and nutrient level on induction of iridoid glycosides in Plantago lanceolata. J Chem Ecol 25:1427–1440

    Article  CAS  Google Scholar 

  • Duff RB, Bacon JSD, Mundie CM, Farmer VC, Russell JD, Forrester AR (1965) Catalpol and methylcatalpol—naturally occurring glycosides in Plantago and Buddleia species. Biochem J 96:1–7

    PubMed  CAS  Google Scholar 

  • Finkes LK, Cady AB, Mulroy JC, Clay K, Rudgers JA (2006) Plant–fungus mutualism affects spider composition in successional fields. Ecol Lett 9:344–353

    Article  Google Scholar 

  • Fuchs A, Bowers MD (2004) Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age. J Chem Ecol 30:1723–1741

    Article  PubMed  CAS  Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mychorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Article  Google Scholar 

  • Gange AC, Bower E, Brown VK (2002a) Differential effects of insect herbivory on arbuscular mycorrhizal colonization. Oecologia 131:103–112

    Article  Google Scholar 

  • Gange AC, Stagg PG, Ward LK (2002b) Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecol Lett 5:11–15

    Article  Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2005) Ecological specificity of arbuscular mycorrhzae: evidence from foliar- and seed-feeding insects. Ecology 86:603–611

    Article  Google Scholar 

  • Gardner DR, Stermitz FR (1988) Host plant utilization and iridoid glycoside sequestration by Euphydryas anicia (Lepidoptera, Nymphalidae). J Chem Ecol 14:2147–2168

    Article  CAS  Google Scholar 

  • Gehring CA, Whitham TG (2002) Mycorrhizae–herbivore interactions: population and community consequences. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology, vol 157. Springer, Berlin, pp 295–320

    Google Scholar 

  • Goverde M, van der Heijden MGA, Wiemken A, Sanders IR, Erhardt A (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362–369

    Article  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753–756

    Article  Google Scholar 

  • Hamilton JG, Zangerl AR, DeLucia EH, Berenbaum MR (2001) The carbon–nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95

    Article  Google Scholar 

  • Jarzomski CM, Stamp NE, Bowers MD (2000) Effects of plant phenology, nutrients and herbivory on growth and defensive chemistry of plantain, Plantago lanceolata. Oikos 88:371–379

    Article  CAS  Google Scholar 

  • Jensen SR, Nielsen BJ, Dahlgren R (1975) Iridoid compounds, their occurrence and systematic importance in angiosperms. Bot Notiser 128:148

    CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Google Scholar 

  • Kula AAR, Hartnett DC, Wilson GWT (2005) Effects of mycorrhizal symbiosis on tallgrass prairie plant–herbivore interactions. Ecol Lett 8:61–69

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mader P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:331–432

    Article  CAS  Google Scholar 

  • Pringle A, Bever JD (2008) Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. New Phytol 180:162–175

    Article  PubMed  Google Scholar 

  • Rabin LB, Pacovsky RS (1985) Reduced larva growth of two lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. J Econ Entomol 78:1358–1363

    Google Scholar 

  • Reynolds HL, Vogelsang KM, Hartley AE, Bever JD, Schultz PA (2006) Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia 147:348–358

    Article  PubMed  Google Scholar 

  • Roberts MR, Paul ND (2006) Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytol 170:677–699

    Article  PubMed  CAS  Google Scholar 

  • Seifert EK, Bever JD, Maron JL (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90:1055–1062

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Stamp NE, Bowers MD (1994) Effects of cages, plant age and the mechanical clipping on plantain chemistry. Oecologia (Berlin) 99:66–71

    Article  Google Scholar 

  • Stamp NE, Bowers MD (1996) Consequences for plantain chemistry and growth when herbivores are attacked by predators. Ecology 77:535–549

    Article  Google Scholar 

  • Stamp NE, Bowers MD (2000) Do enemies of herbivores influence plant growth and chemistry? Evidence from a seminatural experiment. J Chem Ecol 26:2367–2386

    Article  CAS  Google Scholar 

  • Underwood N (1999) The influence of plant and herbivore characteristics on the interaction between induced resistance and herbivore population dynamics. Am Nat 153:282–294

    Article  Google Scholar 

  • Underwood N, Rausher M (2002) Comparing the consequences of induced and constitutive plant resistance for herbivore population dynamics. Am Nat 160:20–30

    Article  PubMed  Google Scholar 

  • Verschoor AM, Vos M, van der Stap I (2004) Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains. Ecol Lett 7:1143–1148

    Article  Google Scholar 

  • Vicari M, Hatcher PE, Ayres PG (2002) Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology 83:2452–2464

    Article  Google Scholar 

  • Wurst S, Dugassa-Gobena D, Langel R, Bonkowski M, Scheu S (2004) Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol 163:169–176

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank David McNutt, Julie Gummow, Dacia Montemayor, Alex Nguyen, Tommy Zajac, Lisa Pratt, Simon Brassel, and David Finkelstein for assistance with data collection, protocols, and equipment; and Fred Nijhout and Laura Grunert for providing Junonia coenia butterflies. Thanks to Keith Clay, Heather Reynolds, Curt Lively, Peggy Schultz, Scott Mangan, Tom Platt, Jennifer Rudgers, Rick Lankau, Mirka Macel, Etzel Garrido Espinosa, Kasey Barton, Bill Bowman, Yan Linhart, Nancy Stamp, and the Bever/Schultz laboratory group for taking the time to review and discuss this paper with us. We thank two anonymous reviewers for comments which improved the manuscript. We acknowledge the support of Sigma Xi Grant-In-Aid of Research, Indiana University McCormick Grant, and NSF grants DEB-0407816 to Alison Bennett and DEB-0049080 and DEB-0616891 to Jim Bever. All experiments comply with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Elizabeth Bennett.

Additional information

Communicated by Bernhard Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, A.E., Bever, J.D. & Deane Bowers, M. Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia 160, 771–779 (2009). https://doi.org/10.1007/s00442-009-1338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1338-5

Keywords

Navigation