Skip to main content
Log in

Chemical variation within and between individuals ofPlantago lanceolata (Plantaginaceae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Variation in concentrations of leaf nitrogen and iridoid glycosides was examined in replicate plants of five genotypes ofPlantago lanceolata (Plantaginaceae) grown in an experimental garden. Nitrogen concentration and iridoid glycoside concentration were affected by leaf age. New leaves had nitrogen concentrations 1.7 to 2.7 times higher than mature leaves. Catalpol concentration was highest in new and intermediate-aged leaves. The concentration of aucubin, the biosynthetic precursor to catalpol, was higher in intermediate-aged leaves than in mature leaves, in three of five genotypes. Consequently, the proportion of aucubin relative to total iridoid glycosides increased as leaves aged. Concentration of iridoid glycosides was not correlated with plant size. Plant genotype significantly affected concentration of nitrogen and iridoid glycosides, as well as plant size. Thus, major indicators of hostplant quality for insect herbivores varied considerably both within and among plant genotypes and individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldwin, I.T. 1988. The alkaloidal responses of wild tobacco to real and simulated herbivory.Oecologia 77:378–381.

    Google Scholar 

  • Baldwin, L.T., Sims, C.L., andKean, S.E. 1990. The reproductive consequences associated with inducible alkaloidal responses in wild tobacco.Ecology 71:252–262.

    Google Scholar 

  • Belofsky, G., Bowers, M.D., Janzen, S., andStermitz, F. 1989. Iridoid glycosides ofAureolaria flava and their sequestration byEuphydryas phaeton butterflies.Phytochemistry 28:1601–1604.

    Google Scholar 

  • Berenbaum, M.R., Zangerl, A.R., andNitao, J.K. 1986. Constraints on chemical coevolution: Wild parsnips and the parsnip webworm.Evolution 40:1215–1228.

    Google Scholar 

  • Berenbaum, M.R., Zangerl, A.R.,andLee, K. 1989. Chemical barriers to adaptation by a specialist herbivore.Oecologia 80:501–506.

    Google Scholar 

  • Bernays, E.A., andDeLuca, C. 1981. Insect anti-feedant properties of an iridoid glycoside: ipolamiide.Experientia 37:886–892.

    Google Scholar 

  • Bowers, M.D. 1980. Unpalatability as a defense strategy ofEuphydryas phaeton (Nymphalidae).Evolution 34:586–600.

    Google Scholar 

  • Bowers, M.D. 1984. Iridoid glycosides and hostplant specificity in larvae of the buckeye butterfly,Junonia coenia (Nymphalidae).J. Chem. Ecol. 10:1567–1577.

    Google Scholar 

  • Bowers, M.D. 1991. The iridoid glycosides, pp. 297–325,in G. Rosenthal andM. Berenbaum (eds.). Herbivores: Their Interaction with Plant Secondary Metabolites, 2nd ed. Academic Press, Orlando, FL.

    Google Scholar 

  • Bowers, M.D., andCollinge, S.K. 1992. Sequestration and metabolism of iridoid glycosides by larvae of the buckeye,Junonia coenia (Nymphalidae): The cost of chemical defense.J. Chem. Ecol. 18:817–831.

    Google Scholar 

  • Bowers, M.D., andPuttick, G.M. 1988. The effect of qualitative variation in iridoid glycosides on generalist and specialist lepidopteran herbivores.J. Chem. Ecol. 14:319–334.

    Google Scholar 

  • Bowers, M.D., andPuttick, G.M. 1989. Iridoid glycosides and insect feeding preferences: Gypsy moths,Lymantria dispar (Lymantriidae), and buckeyes,Junonia coenia (Nymphalidae).Ecol. Entomol. 14:247–256.

    Google Scholar 

  • Cavers, P.B., Bassett, I.J., andCrompton, C.W. 1980. The biology of Canadian weeds. 47.Plantago lanceolata L. Can. J. Plant Sci. 60:1269–1282.

    Google Scholar 

  • Damtoft, S., Jensen, S.R., andNielsen, B.J. 1983. The biosynthesis of iridoid glucosides from 8-epi-deoxyloganic acid.Biochem. Soc. Trans. 11:594–595.

    Google Scholar 

  • Duff, R.B., Bacon, J.S.D., Mundie, C.M., Farmer, V.C., Russell, J.D., andForrester, A.R. 1965. Catalpol and methyl catalpol: Naturally occurring glycosides inPlantago andBuddleia species.Biochem. J. 96:1–5.

    Google Scholar 

  • Fajer, E.D., Bowers, M.D., andBazzaz, F.A. 1989. The effects of enriched carbon dioxide atmospheres on plant/insect herbivore interactions.Science 243:1198–1200.

    Google Scholar 

  • Fajer, E.D.,Bowers, M.D., andBazzaz, F.A. 1992. The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals inPlantago: A test of the carbon/ nutrient balance hypothesis.Am. Nat. (in press).

  • Gardner, D.R., andStermitz, F.R. 1988. Host plant utilization and iridoid glycoside sequestration byEuphydryas anicia (Lepidoptera: Nymphalidae).J. Chem. Ecol. 14:2147–2168.

    Google Scholar 

  • Gouyon, P.H., Fort, P.H., andCaraux, G. 1983. Selection of seedlings ofThymus vulgaris by grazing slugs.J. Ecol. 73:299–306.

    Google Scholar 

  • Gulmon, S.L., andMooney, H.A. 1986. Costs of defense and their effects on plant productivity, pp. 681–698,in T. Givnish (ed.). On the Economy of Plant Form and Function. Cambridge University Press, New York.

    Google Scholar 

  • Harper, J.L. 1989. The value of a leaf.Oecologia 80:53–58.

    Google Scholar 

  • Haukioja, E., andNeuvonen, S. 1987. Insect population dynamics and induction of plant resistance: The testing of hypotheses, pp. 411–432,in P. Barbosa and J.C. Schultz (eds.). Insect Outbreaks. Academic Press, New York.

    Google Scholar 

  • Lawton, J.H. 1986. Surface availability and insect community structure: The effects of architecture and fractal dimension of plants, pp. 317–331,in B. Juniper and R. Southwood (eds.). Insects and the Plant Surface. Edward Arnold, London.

    Google Scholar 

  • Lincoln, D.E., andLangenheim, J.H. 1978. Effect of light and temperature on monoterpenoid yield and composition inSatureja douglasii.Biochem. Syst. Ecol. 6:21–32.

    Google Scholar 

  • Lincoln, D.E., andLangenheim, J.H. 1981. A genetic approach to monoterpenoid variation inSatureja douglasii.Biochem. Syst. Ecol. 9:153–161.

    Google Scholar 

  • Lincoln, D.E., Murray, M.J., andLawrence, B.M. 1986. Chemical composition and genetic basis for the isopinocamphone chemotype ofMentha citrata hybrids.Phytochemistry 25:1857–1863.

    Google Scholar 

  • Loader, C., andDamman, H. 1991. Nitrogen content of food plants and vulnerability ofPieris rapae to natural enemies.Ecology 72:1586–1590.

    Google Scholar 

  • Louda, S.M., andRodman, J.E. 1983. Ecological patterns in the glucosinolate content of a native mustard,Cardamine cordifolia, in the Rocky Mountains.J. Chem. Ecol. 9:397–421.

    Google Scholar 

  • Mackay, D.A. 1985. Prealighting search behavior and host plant selection by ovipositingEuphydryas editha butterflies.Ecology 66:142–151.

    Google Scholar 

  • Mackay, D.A., andSinger, M.C. 1982. The basis of an apparent preference for isolated host plants by ovipositingEuptychia libye butterflies.Ecol. Entomol. 7:299–303.

    Google Scholar 

  • Mattson, W.J. 1980. Herbivory in relation to plant nitrogen content.Annu. Rev. Ecol. Syst. 11:119–161.

    Google Scholar 

  • McKey, D. 1979. The distribution of secondary compounds within plants, pp. 59–133,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Mihaliak, C.A., Couvet, C., andLincoln, D.E. 1989. Genetic and environmental contributions to variation in leaf mono- and sesquiterpenes ofHeterotheca subaxillaris.Biochem. Syst. Ecol. 17:529–533.

    Google Scholar 

  • Pereyra, P.C., andBowers, M.D. 1988. Iridoid glycosides as oviposition stimulants for the buckeye butterfly,Junonia coenia (Nymphalidae).J. Chem. Ecol. 14:917–928.

    Google Scholar 

  • Puttick, G.M., andBowers, M.D. 1988. The effect of iridoid glycosides on growth, survival, and food choice of the armyworm,Spodoptera eridania (Lepidoptera: Noctuidae).J. Chem. Ecol. 14:335–351.

    Google Scholar 

  • Raupp, M.J., andDenno, R.F. 1983. Leaf age as a predictor of herbivore distribution and abundance, pp. 91–124,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.

    Google Scholar 

  • Rausher, M.D. 1981. The effect of native vegetation on the susceptibility ofAristolocia reticulata (Aristolociaceae) to herbivore attack.Ecology 62:1187–1195.

    Google Scholar 

  • Rausher, M.D. 1983. Ecology of host-selection behavior in phytophagous insects, pp. 223–257,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.

    Google Scholar 

  • Rausher, M.D., Mackay, D.A., andSinger, M.C. 1981. Pre- and post-alighting host discrimination byEuphydryas editha butterflies: The behavioural mechanisms causing clumped distributions of egg clusters.Anim. Behav. 29:1220–1228.

    Google Scholar 

  • Ross, M.D. 1973. Inheritance of self-incompatibility inPlantago lanceolata.Heridity 30:169–176.

    Google Scholar 

  • Schmitt, J., Niles, J., andWulff, R.D. 1992. Norms of reaction of seed traits to maternal environments inPlantago lanceolata.Am. Nat. 139:451–466.

    Google Scholar 

  • Scott, J.A. 1986. The Butterflies of North America. Stanford University Press, Stanford, CA.

    Google Scholar 

  • Scriber, J.M., andSlansky, F., Jr. 1981. The nutritional ecology of immature insects.Annu. Rev. Entomol. 26:183–211.

    Google Scholar 

  • Singer, M.C., Thomas, C.D., Billington, H.L., andParmesan, C. 1989. Variation among conspecific insect populations in the mechanistic basis of diet breadth.Anim. Behav. 37:751–759.

    Google Scholar 

  • Stamp, N.E., andBowers, M.D. 1990. Variation in food quality and temperature constrain foraging of gregarious caterpillars.Ecology 71:1031–1039.

    Google Scholar 

  • Thomas, C.D. 1989. Predator-herbivore interactions and the escape of isolated plants from phytophagous insects.Oikos 55:291–298.

    Google Scholar 

  • Thomas, C.D. 1990. Herbivore diets, herbivore colonization, and the escape hypothesis.Ecology 71:610–615.

    Google Scholar 

  • Tietz, H.M. 1972. An Index to the Described Life Histories, Early Stages and Hosts of the Macrolepidoptera of the Continental United States and Canada. Allyn Museum of Entomology, Sarasota, FL.

    Google Scholar 

  • Van Dijk, H. 1985. Allozyme genetics, self-incompatibility and male sterility inPlantago lanceolata.Heredity 54:53–63.

    Google Scholar 

  • Waterman, P.G., andMole, S. 1989. Extrinsic factors influencing production of secondary metabolites in plants, pp. 107–134,in E.A. Bernays (ed.). Insect-Plant Interactions. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Wu, L., andAntonovics, J. 1975. Experimental ecological genetics inPlantago. I. Induction of roots and shoots on leaves for large scale vegetative propagation and metal tolerance testing inP.lanceolata. New Phytol. 75:277–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowers, M.D., Stamp, N.E. Chemical variation within and between individuals ofPlantago lanceolata (Plantaginaceae). J Chem Ecol 18, 985–995 (1992). https://doi.org/10.1007/BF00980057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00980057

Key Words

Navigation