Skip to main content

Advertisement

Log in

Ovarian tissue cryopreservation and transplantation: a review on reactive oxygen species generation and antioxidant therapy

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cancer is the leading cause of death worldwide. Fortunately, the survival rate of cancer continues to rise, owing to advances in cancer treatments. However, these treatments are gonadotoxic and cause infertility. Ovarian tissue cryopreservation and transplantation (OTCT) is the most flexible option to preserve fertility in women and children with cancer. However, OTCT is associated with significant follicle loss and an accompanying short lifespan of the grafts. There has been a decade of research in cryopreservation-induced oxidative stress in single cells with significant successes in mitigating this major source of loss of viability. However, despite its success elsewhere and beyond a few promising experiments, little attention has been paid to this key aspect of OTCT-induced damage. As more and more clinical practices adopt OTCT for fertility preservation, it is a critical time to review oxidative stress as a cause of damage and to outline potential ameliorative interventions. Here we give an overview of the application of OTCT for female fertility preservation and existing challenges; clarify the potential contribution of oxidative stress in ovarian follicle loss; and highlight potential ability of antioxidant treatments to mitigate the OTCT-induced injuries that might be of interest to cryobiologists and reproductive clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedelahi A, Salehnia M, Allameh AA, Davoodi D (2010) Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum Reprod 25:977–985

    Article  CAS  PubMed  Google Scholar 

  • Abedi R, Eimani H, Rad SP et al (2014) Evaluation effects of allopurinol and FSH on reduction of ischemia–reperfusion injury and on preservation of follicle after heterotopic auto-transplantation of ovarian tissue in mouse. Reprod Med Biol 13:29–35

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Aponte-Mellado A, Premkumar BJ et al (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:1–31

    Article  Google Scholar 

  • Agarwal A, Gupta S, Sharma RK (2005) Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Otaibi N (2018) Novel Cryoprotective Agents to Improve the Quality of Cryopreserved Mammalian Cells

  • Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Argüelles J-C (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148:2599–2606

    Article  CAS  PubMed  Google Scholar 

  • Amorim CA, Curaba M, Van Langendonckt A et al (2011) Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod Biomed Online 23:160–186

    Article  PubMed  Google Scholar 

  •  Amorim EMG, Damous LL, Durando MCS et al (2014) N-acetylcysteine improves morphologic and functional aspects of ovarian grafts in rats. Acta Cir Bras 29:22–27

    Article  PubMed  Google Scholar 

  • Anathy V, Roberson EC, Guala AS et al (2012) Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death. Antioxid Redox Signal 16:496–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen ST, Pors SE, la Cour Poulsen L et al (2019) Ovarian stimulation and assisted reproductive technology outcomes in women transplanted with cryopreserved ovarian tissue: a systematic review. Fertil Steril 112:908–921

    Article  PubMed  Google Scholar 

  • Anderson RA, Fauser B (2018) Ovarian tissue transplantation for hormone replacement. Reprod Biomed Online 37:251–252

    Article  CAS  PubMed  Google Scholar 

  • Appaix F, Kuznetsov AV, Usson Y et al (2003) Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol 88:175–190

    Article  CAS  PubMed  Google Scholar 

  • Arav A, Natan Y (2009) Directional freezing: A solution to the methodological challenges to preserve large organs. Semin Reprod Med

  • Argyle CE, Harper JC, Davies MC (2016) Oocyte cryopreservation: where are we now? Hum Reprod Update 22:440–449

    Article  CAS  PubMed  Google Scholar 

  • Arian SE, Goodman L, Flyckt RL, Falcone T (2017) Ovarian transposition: a surgical option for fertility preservation. Fertil Steril 107:e15

    Article  PubMed  Google Scholar 

  • Asadi E, Najafi A, Benson JD (2022) Exogenous Melatonin Ameliorates the Negative Effect of Osmotic Stress in Human and Bovine Ovarian Stromal Cells. Antioxidants 11:1054. https://doi.org/10.3390/antiox11061054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asadi E, Najafi A, Moeini A et al (2017) Ovarian tissue culture in the presence of VEGF and fetuin stimulates follicle growth and steroidogenesis. J Endocrinol 232:205–219

    Article  CAS  PubMed  Google Scholar 

  • Asadi E, Shabani R, Ghafari S, Golalipour MJ (2013) Preventing effect of vitamin E on oocytes apoptosis in morphinetreated mice. Int J Morphol 31:533–538

    Article  Google Scholar 

  • Asadi E, Jahanshahi M, Golalipour MJ (2012) Effect of vitamin e on oocytes apoptosis in nicotine-treated mice. Iran J Basic Med Sci 15:880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azim HA Jr, Davidson NE, Ruddy KJ (2016) Challenges in treating premenopausal women with endocrine-sensitive breast cancer. Am Soc Clin Oncol Educ B 36:23–32

    Article  Google Scholar 

  • Azzi A, Azzone GF (1967) Swelling and shrinkage phenomena in liver mitochondria VI. Metabolism-independent swelling coupled to ion movement. Biochim Biophys Acta (BBA)-Bioenergetics 131:468–478

  • Barrozo LG, Paulino LRFM, Silva BR et al (2021) N-acetyl-cysteine and the control of oxidative stress during in vitro ovarian follicle growth, oocyte maturation, embryo development and cryopreservation. Anim Reprod Sci 231:106801

    Article  CAS  PubMed  Google Scholar 

  • Baust JG, Gao D, Baust JM (2009) Cryopreservation: An emerging paradigm change. Organogenesis 5:90–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Benson JD, Higgins AZ, Desai K, Eroglu A (2018) A toxicity cost function approach to optimal CPA equilibration in tissues. Cryobiology 80:144–155

    Article  PubMed  Google Scholar 

  • Benson JD, Kearsley AJ, Higgins AZ (2012) Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function. Cryobiology 64:144–151

    Article  CAS  PubMed  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  PubMed  Google Scholar 

  • Best BP (2015) Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res 18:422–436

    Article  PubMed  PubMed Central  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissoyi A, Nayak B, Pramanik K, Sarangi SK (2014) Targeting cryopreservation-induced cell death: a review. Biopreserv Biobank 12:23–34

    Article  CAS  PubMed  Google Scholar 

  • Borjizadeh A, Ahmadi H, Daneshi E et al (2019) The effect of adding Rosmarinic and Ascorbic acids to vitrification media on fertilization rate of the mice oocyte: An experimental study. Int J Reprod Biomed 17:195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brito DC, Brito AB, Scalercio S et al (2014) Vitamin E-analog Trolox prevents endoplasmic reticulum stress in frozen-thawed ovarian tissue of capuchin monkey (Sapajus apella). Cell Tissue Res 355:471–480

    Article  CAS  PubMed  Google Scholar 

  • Cacciottola L, Donnez J, Dolmans M-M (2021) Ovarian tissue damage after grafting: systematic review of strategies to improve follicle outcomes. Reprod Biomed Online

  • Cacciottola L, Manavella DD, Amorim CA et al (2018) In vivo characterization of metabolic activity and oxidative stress in grafted human ovarian tissue using microdialysis. Fertil Steril 110:534–544

    Article  CAS  PubMed  Google Scholar 

  • Canadian Fertility and Andrology Society (2020) Position Statement on Ovarian Tissue Cryopreservation

  • Cao B, Qin J, Pan B et al (2022) Oxidative Stress and Oocyte Cryopreservation: Recent Advances in Mitigation Strategies Involving Antioxidants. Cells 11:3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho ADA, Faustino LR, Silva CMG et al (2014) Catalase addition to vitrification solutions maintains goat ovarian preantral follicles stability. Res Vet Sci 97:140–147

  • Chamayou S, Bonaventura G, Alecci C et al (2011) Consequences of metaphase II oocyte cryopreservation on mRNA content. Cryobiology 62:130–134

    Article  CAS  PubMed  Google Scholar 

  • Chappel S (2013) The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int

  • Chatterjee A, Saha D, Niemann H et al (2017) Effects of cryopreservation on the epigenetic profile of cells. Cryobiology 74:1–7

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Han S, Liu W et al (2012) Effect of vitrification on mitochondrial membrane potential in human metaphase II oocytes. J Assist Reprod Genet 29:1045–1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng LY, Sun TC, Liu XC, et al (2020) Melatonin induction of HSP90 expression exerts cryoprotective effect on ovarian tissue. Cryobiology

  • Chervona Y, Costa M (2012) The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic Biol Med 53:1041–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi HJ, Kim JH, Ryu CS et al (2008) Protective effect of antioxidant supplementation in sperm-preparation medium against oxidative stress in human spermatozoa. Hum Reprod 23:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Chung EH, Lim SL, Myers E, et al (2021) Oocyte cryopreservation versus ovarian tissue cryopreservation for adult female oncofertility patients: a cost-effectiveness study. J Assist Reprod Genet 1–9

  • Commin L, Buff S, Rosset E et al (2012) Follicle development in cryopreserved bitch ovarian tissue grafted to immunodeficient mouse. Reprod Fertil Dev 24:461–471

    Article  CAS  PubMed  Google Scholar 

  • Coticchio G, Borini A, Distratis V et al (2010) Qualitative and morphometric analysis of the ultrastructure of human oocytes cryopreserved by two alternative slow cooling protocols. J Assist Reprod Genet 27:131–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz MHC, Leal CLV, Cruz JF et al (2014) Essential actions of melatonin in protecting the ovary from oxidative damage. Theriogenology 82:925–932

    Article  CAS  PubMed  Google Scholar 

  • Damavandi M, Farrokh P, Zavareh S (2021) Effect of Mouse Ovarian Vitrification on Promoter Methylation of Inhba and Inhbb in Granulosa Cells of Follicles. Cryoletters 42:67–72

    PubMed  Google Scholar 

  • Daneshpoya F, Karimipour M, ZIRAKJAVANMARD M, Pourheydar B, (2017) Effects of n-acetylcysteine on ovarian tissue autografted intogranulation tissue compared to back muscle in rats. Turkish J Med Sci 47:1931–1939

    Article  CAS  Google Scholar 

  • Davidson AF, Benson JD, Higgins AZ (2014) Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes. Theor Biol Med Model 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Demeestere I, Simon P, Emiliani S et al (2009) Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update 15:649–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhonnabháin BN, Elfaki N, Fraser K et al (2022) A comparison of fertility preservation outcomes in patients who froze oocytes, embryos, or ovarian tissue for medically indicated circumstances: a systematic review and meta-analysis. Fertil Steril

  • Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev

  • Dludla PV, Jack B, Viraragavan A et al (2018) A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes. Toxicol reports 5:1014–1020

    Article  CAS  Google Scholar 

  • Dolmans M-M, Donnez J (2021) Fertility preservation in women for medical and social reasons: Oocytes vs ovarian tissue. Best Pract Res Clin Obstet Gynaecol 70:63–80

    Article  PubMed  Google Scholar 

  • Dolmans M-M, Donnez J, Cacciottola L (2020) Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends Mol Med

  • Dolmans M-M, Donnez J, Camboni A et al (2009) IVF outcome in patients with orthotopically transplanted ovarian tissue. Hum Reprod 24:2778–2787

    Article  PubMed  Google Scholar 

  • Donnez J, Dolmans M-M, Demylle D et al (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364:1405–1410

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Morais MLG, de Brito DCC, Pinto Y et al (2019) Natural antioxidants in the vitrification solution improve the ovine ovarian tissue preservation. Reprod Biol 19:270–278

    Article  PubMed  Google Scholar 

  • Ebrahimi M, Asbagh FA (2011) Pathogenesis and causes of premature ovarian failure: an update. Int J Fertil Steril 5:54

    PubMed  PubMed Central  Google Scholar 

  • Echigo R, Shimohata N, Karatsu K et al (2012) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 10:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  • Fabbri R, Vicenti R, Macciocca M et al (2014a) Good preservation of stromal cells and no apoptosis in human ovarian tissue after vitrification. Biomed Res Int

  • Fabbri R, Vicenti R, Martino NA et al (2014b) Confocal laser scanning microscopy analysis of bioenergetic potential and oxidative stress in fresh and frozen-thawed human ovarian tissue from oncologic patients. Fertil Steril 101:795–804

    Article  PubMed  Google Scholar 

  • Fabbri R, Pasquinelli G, Keane D et al (2010) Optimization of protocols for human ovarian tissue cryopreservation with sucrose, 1, 2-propanediol and human serum. Reprod Biomed Online 21:819–828

    Article  CAS  PubMed  Google Scholar 

  • Fahy GM, Wowk B (2021) Principles of ice-free cryopreservation by vitrification. In: Cryopreservation and Freeze-Drying Protocols. Springer, pp 27–97

  • Fenton HJH (1894) LXXIII.—Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  • Friedman OR, Orvieto R, Fisch B et al (2012) Possible improvements in human ovarian grafting by various host and graft treatments. Hum Reprod 27:474–482

    Article  CAS  PubMed  Google Scholar 

  • García-Giménez JL, Romá-Mateo C, Perez-Machado G et al (2017) Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med 112:36–48

    Article  PubMed  Google Scholar 

  • Gaweł S, Wardas M, Niedworok E, Wardas P (2004) Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek (Warsaw, Pol 1960) 57:453–455

  • Griffiths MJ, Winship AL, Hutt KJ (2020) Do cancer therapies damage the uterus and compromise fertility? Hum Reprod Update 26:161–173

    Article  CAS  PubMed  Google Scholar 

  • Gromer S, Urig S, Becker K (2004) The thioredoxin system—from science to clinic. Med Res Rev 24:40–89

    Article  CAS  PubMed  Google Scholar 

  • Gualtieri R, Kalthur G, Barbato V et al (2021) Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants 10:337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Yang J, Qin J et al (2021) Melatonin promotes in vitro maturation of vitrified-warmed mouse germinal vesicle oocytes, potentially by reducing oxidative stress through the Nrf2 pathway. Animals 11:2324

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta MK, Uhm SJ, Lee HT (2010) Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 93:2602–2607

    Article  PubMed  Google Scholar 

  • Hassanvand MN, Mehranjani MS, Shojafar E (2019) Melatonin improves the structure and function of autografted mice ovaries through reducing inflammation: a stereological and biochemical analysis. Int Immunopharmacol 74:105679

    Article  Google Scholar 

  • Hatami S, Zavareh S, Salehnia M et al (2014) Comparison of oxidative status of mouse pre-antral follicles derived from vitrified whole ovarian tissue and vitrified pre-antral follicles in the presence of alpha lipoic acid. J Obstet Gynaecol Res 40:1680–1688

    Article  CAS  PubMed  Google Scholar 

  • He Z-Y, Wang H-Y, Zhou X et al (2018) Evaluation of vitrification protocol of mouse ovarian tissue by effect of DNA methyltransferase-1 and paternal imprinted growth factor receptor-binding protein 10 on signaling pathways. Cryobiology 80:89–95

    Article  CAS  PubMed  Google Scholar 

  • Hemadi M, Shokri S, Pourmatroud E et al (2012) Follicular dynamic and immunoreactions of the vitrified ovarian graft after host treatment with variable regimens of melatonin. Am J Reprod Immunol 67:401–412

    Article  CAS  PubMed  Google Scholar 

  • Hemadi M, Abolhassani F, Akbari M et al (2009) Melatonin promotes the cumulus–oocyte complexes quality of vitrified–thawed murine ovaries; with increased mean number of follicles survival and ovary size following heterotopic transplantation. Eur J Pharmacol 618:84–90

    Article  CAS  PubMed  Google Scholar 

  • Herrera EA, Cifuentes-Zúñiga F, Figueroa E et al (2017) N-Acetylcysteine, a glutathione precursor, reverts vascular dysfunction and endothelial epigenetic programming in intrauterine growth restricted guinea pigs. J Physiol 595:1077–1092

    Article  CAS  PubMed  Google Scholar 

  • Hitchler MJ, Oberley LW, Domann FE (2008) Epigenetic silencing of SOD2 by histone modifications in human breast cancer cells. Free Radic Biol Med 45:1573–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseinzadeh E, Saeed Z, Taghi L (2015) Coenzyme Q10 improves developmental competence of mice pre-antral follicle derived from vitrified ovary. J Paramed Sci 6:2008–4978

    Google Scholar 

  • Hunt S, Vollenhoven B (2019) Fertility preservation in women with cancer and afterward. Climacteric 1–5

  • Iussig B, Maggiulli R, Fabozzi G et al (2019) A brief history of oocyte cryopreservation: Arguments and facts. Acta Obstet Gynecol Scand 98:550–558

    Article  PubMed  Google Scholar 

  • Jahromi BN, Mosallanezhad Z, Matloob N et al (2015) The potential role of granulosa cells in the maturation rate of immature human oocytes and embryo development: A co-culture study. Clin Exp Reprod Med 42:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang TH, Park SC, Yang JH et al (2017) Cryopreservation and its clinical applications. Integr Med Res 6:12–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Physiol 295:C849–C868

    Article  CAS  Google Scholar 

  • Kang M-H, Das J, Gurunathan S et al (2017) The cytotoxic effects of dimethyl sulfoxide in mouse preimplantation embryos: a mechanistic study. Theranostics 7:4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasaven LS, Saso S, Getreu N et al (2022) Age-related fertility decline: is there a role for elective ovarian tissue cryopreservation? Hum. Reprod. 37:1970–1979

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashuba CM, Benson JD, Critser JK (2014) Rationally optimized cryopreservation of multiple mouse embryonic stem cell lines: I—Comparative fundamental cryobiology of multiple mouse embryonic stem cell lines and the implications for embryonic stem cell cryopreservation protocols. Cryobiology 68:166–175

    Article  CAS  PubMed  Google Scholar 

  • Kawai K, Li Y-S, Song M-F, Kasai H (2010) DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorg Med Chem Lett 20:260–265

    Article  CAS  PubMed  Google Scholar 

  • Keros V, Xella S, Hultenby K et al (2009) Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod 24:1670–1683

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Lee HJ, Lee J et al (2015) The beneficial effects of polyethylene glycol-superoxide dismutase on ovarian tissue culture and transplantation. J Assist Reprod Genet. https://doi.org/10.1007/s10815-015-0537-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kim S-W, Han S-J et al (2021) Molecular mechanism and prevention strategy of chemotherapy-and radiotherapy-induced ovarian damage. Int J Mol Sci 22:7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SK, Youm HW, Lee JR, Suh CS (2017) Role of Antioxidants and Antifreeze Proteins in Cryopreservation/Vitrification. In: Cryopreservation of Mammalian Gametes and Embryos. Springer, pp 45–63

  • Kim SS (2012) Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J Assist Reprod Genet. https://doi.org/10.1007/s10815-012-9757-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SS, Yang HW, Kang HG et al (2004) Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil Steril 82:679–685

    Article  CAS  PubMed  Google Scholar 

  • Kimáková P, Solár P, Solárová Z et al (2017) Erythropoietin and its angiogenic activity. Int J Mol Sci 18:1519

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinnear HM, Tomaszewski CE, Chang FL et al (2020) The ovarian stroma as a new frontier. Reproduction 160:R25–R39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF (1999) Mechanisms of protection of catalase by NADPH: kinetics and stoichiometry. J Biol Chem 274:13908–13914

    Article  CAS  PubMed  Google Scholar 

  • Knight PG, Glister C (2006) TGF-β superfamily members and ovarian follicle development. Reproduction 132:191–206

    Article  CAS  PubMed  Google Scholar 

  • Kolusari A, Okyay AG, Koçkaya EA (2018) The effect of erythropoietin in preventing ischemia–reperfusion injury in ovarian tissue transplantation. Reprod Sci 25:406–413

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    Article  CAS  PubMed  Google Scholar 

  • Kumar TR, Wiseman AL, Kala G et al (2000) Reproductive defects in γ-glutamyl transpeptidase-deficient mice. Endocrinology 141:4270–4277

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Ozkavukcu S, Ku S-Y (2021) Current and future perspectives for improving ovarian tissue cryopreservation and transplantation outcomes for cancer patients. Reprod Sci 1–13

  • Lee W, Yoon S, Yoon T et al (2004) Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev Inc Gamete Res 69:159–163

    Article  CAS  Google Scholar 

  • Lei T, Guo N, Tan M, Li Y (2014) Effect of mouse oocyte vitrification on mitochondrial membrane potential and distribution. J Huazhong Univ Sci Technol [Medical Sci] 34:99–102

  • Len JS, Koh WSD, Tan S-X (2019) The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep 39: BSR20191601

  • Leonel ECR, Lucci CM, Amorim CA (2019) Cryopreservation of human ovarian tissue: a review. Transfus Med Hemotherapy 46:173–181

    Article  Google Scholar 

  • Lévy E, El Banna N, Baïlle D et al (2019) Causative links between protein aggregation and oxidative stress: A review. Int J Mol Sci 20:3896

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Li Z-H, Dzyuba B et al (2010) Evaluating the impacts of osmotic and oxidative stress on common carp (Cyprinus carpio, L.) sperm caused by cryopreservation techniques. Biol Reprod 83:852–858

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ruan X, Liebenthron J et al (2019) Ovarian tissue cryopreservation for patients with premature ovary insufficiency caused by cancer treatment: optimal protocol. Climacteric 22:383–389

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hu Y, Zhu S et al (2021) Protective Effects of Reduced Glutathione and Ulinastatin on Xeno-transplanted Human Ovarian Tissue Against Ischemia and Reperfusion Injury. Cell Transplant 30:0963689721997151

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu L, Weng J et al (2021) Biological roles of l-carnitine in oocyte and early embryo development. Mol Reprod Dev 88:673–685

    Article  CAS  PubMed  Google Scholar 

  • Liu XC, Sun TC, Li HY et al (2020) Antioxidative effect of melatonin on cryopreserved ovarian tissue in mice. Cryobiology 96:99–105

    Article  CAS  PubMed  Google Scholar 

  • Lotz L, Dittrich R, Hoffmann I, Beckmann MW (2019) Ovarian Tissue Transplantation: Experience From Germany and Worldwide Efficacy. Clin Med Insights Reprod Heal. https://doi.org/10.1177/1179558119867357

    Article  Google Scholar 

  • Lu J, Wang Z, Cao J et al (2018) A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol 16:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Luz HKM, Santos RR, Wanderley LS et al (2012) Catalase prevents lipid peroxidation and enhances survival of caprine preantral follicles cryopreserved in a 1, 2-propanediol-freezing medium. Biopreserv Biobank 10:338–342

    Article  CAS  PubMed  Google Scholar 

  • Macklon KT (2020) Cryopreservation of ovarian tissue works, but challenges remain. Fertil Steril 114:281–282

    Article  PubMed  Google Scholar 

  • Mahajan N (2015) Fertility preservation in female cancer patients: an overview. J Hum Reprod Sci 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoodi M, Mehranjani MS, Shariatzadeh SMA et al (2015) N-acetylcysteine improves function and follicular survival in mice ovarian grafts through inhibition of oxidative stress. Reprod Biomed Online 30:101–110

    Article  CAS  PubMed  Google Scholar 

  • Mahmoodi M, Soleimani Mehranjani M, Shariatzadeh SM et al (2014) Effects of erythropoietin on ischemia, follicular survival, and ovarian function in ovarian grafts. Reproduction 147:733–741

    Article  CAS  PubMed  Google Scholar 

  • Manipalviratn S, Tong Z-B, Stegmann B et al (2011) Effect of vitrification and thawing on human oocyte ATP concentration. Fertil Steril 95:1839–1841

    Article  CAS  PubMed  Google Scholar 

  • Manuchehrabadi N, Gao Z, Zhang J et al (2017) Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med 9

  • Marcantonini G, Bartolini D, Zatini L et al (2022) Natural Cryoprotective and Cytoprotective Agents in Cryopreservation: A Focus on Melatonin. Molecules 27:3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin L, Bedoschi G, Kawahara T, Oktay KH (2020) History, evolution and current state of ovarian tissue auto-transplantation with cryopreserved tissue: a successful translational research journey from 1999 to 2020. Reprod Sci 27:955–962

    Article  PubMed  Google Scholar 

  • Marques LS, Fossati AAN, Rodrigues RB et al (2019) Slow freezing versus vitrification for the cryopreservation of zebrafish (Danio rerio) ovarian tissue. Sci Rep 9:1–11

    Article  Google Scholar 

  • Massignam ET, Ferreira M, Sanguinet E et al (2018) Antioxidant defense capacity of ovarian tissue after vitrification in a metal closed system. JBRA Assist Reprod 22:199

    PubMed  PubMed Central  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2008) Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 82:273–299

    Article  PubMed  Google Scholar 

  • Mathias FJ, D’souza F, Uppangala S et al (2014) Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity. Syst Biol Reprod Med 60:317–322

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki S, Schubert B (2010) Oxidative stress status in normal ovarian cortex surrounding ovarian endometriosis. Fertil Steril 93:2431–2432

    Article  PubMed  Google Scholar 

  • Mauri D, Gazouli I, Zarkavelis G et al (2020) Chemotherapy associated ovarian failure. Front Endocrinol (Lausanne) 11:935

    Google Scholar 

  • Melo MAP, Oskam IC, Celestino JJH et al (2011) Adding ascorbic acid to vitrification and IVC medium influences preantral follicle morphology, but not viability. Reprod Domest Anim 46:742–745

    Article  CAS  PubMed  Google Scholar 

  • Mikaeili S, Rashidi BH, Safa M et al (2016) Altered FoxO3 expression and apoptosis in granulosa cells of women with polycystic ovary syndrome. Arch Gynecol Obstet 294:185–192

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  CAS  PubMed  Google Scholar 

  • Monzo C, Haouzi D, Roman K et al (2012) Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes. Hum Reprod 27:2160–2168

    Article  CAS  PubMed  Google Scholar 

  • Moshkdanian G, Moghani-Ghoroghi F, Pasbakhsh P et al (2017) Melatonin upregulates ErbB1 and ErbB4, two primary implantation receptors, in pre-implantation mouse embryos. Iran J Basic Med Sci 20:655

    PubMed  PubMed Central  Google Scholar 

  • Nahata L, Woodruff TK, Quinn GP et al (2020) Ovarian tissue cryopreservation as standard of care: what does this mean for pediatric populations? J Assist Reprod Genet 37:1323

    Article  PubMed  PubMed Central  Google Scholar 

  • Najafi A, Adutwum E, Yari A et al (2018) Melatonin affects membrane integrity, intracellular reactive oxygen species, caspase3 activity and AKT phosphorylation in frozen thawed human sperm. Cell Tissue Res 372:149–159

    Article  CAS  PubMed  Google Scholar 

  • Najafi A, Asadi E, Moawad AR et al (2016) Supplementation of freezing and thawing media with brain-derived neurotrophic factor protects human sperm from freeze-thaw-induced damage. Fertil Steril 106:1658–1665

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, DesMarais TL, Tong Z et al (2015) Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med 82:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nohales-Córcoles M, Sevillano-Almerich G, Di Emidio G et al (2016) Impact of vitrification on the mitochondrial activity and redox homeostasis of human oocyte. Hum Reprod 31:1850–1858

    Article  PubMed  Google Scholar 

  • Nottola SA, Coticchio G, Sciajno R et al (2009) Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop. Reprod Biomed Online 19:17–27

    Article  PubMed  Google Scholar 

  • Nugent D, Newton H, Gallivan L, Gosden RG (1998) Protective effect of vitamin E on ischaemia-reperfusion injury in ovarian grafts. Reproduction 114:341–346

    Article  CAS  Google Scholar 

  • Oktay K, Bedoschi G, Pacheco F et al (2016) First pregnancies, live birth, and in vitro fertilization outcomes after transplantation of frozen-banked ovarian tissue with a human extracellular matrix scaffold using robot-assisted minimally invasive surgery. Am J Obstet Gynecol 214:94. e1-94. e9

  • Oktem O, Kim SS, Selek U et al (2018) Ovarian and Uterine Functions in Female Survivors of Childhood Cancers. Oncologist. https://doi.org/10.1634/theoncologist.2017-0201

    Article  PubMed  Google Scholar 

  • Olesen HØ, Pors SE, Jensen LB et al (2020) N-acetylcysteine protects ovarian follicles from ischemia-reperfusion injury in xenotransplanted human ovarian tissue. Hum Reprod

  • Olmo A, Barroso P, Barroso F, Risco R (2020) The Use of High-Intensity Focused Ultrasound for the Rewarming of Cryopreserved Biological Material. IEEE Trans Ultrason Ferroelectr Freq Control 68:599–607

    Article  Google Scholar 

  • Orisaka M, Tajima K, Mizutani T et al (2006) Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Biol Reprod 75:734–740

    Article  CAS  PubMed  Google Scholar 

  • Oskam IC, Lund T, Santos RR (2011) Irreversible damage in ovine ovarian tissue after cryopreservation in propanediol: analyses after in vitro culture and xenotransplantation. Reprod Domest Anim 46:793–799

    Article  CAS  PubMed  Google Scholar 

  • Özcan P, Fıçıcıoğlu C, Yıldırım ÖK et al (2015) Protective effect of resveratrol against oxidative damage to ovarian reserve in female Sprague-Dawley rats. Reprod Biomed Online 31:404–410

    Article  PubMed  Google Scholar 

  • Parkes AS, Smith AU (1953) Regeneration of rat ovarian tissue grafted after exposure to low temperatures. Proc R Soc London Ser B-Biological Sci 140:455–470

    CAS  Google Scholar 

  • Peper JS, Brouwer RM, van Leeuwen M et al (2010) HPG-axis hormones during puberty: a study on the association with hypothalamic and pituitary volumes. Psychoneuroendocrinology 35:133–140

    Article  CAS  PubMed  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30:11–26

    Article  CAS  PubMed  Google Scholar 

  • Piras AR, Ariu F, Falchi L et al (2020) Resveratrol treatment during maturation enhances developmental competence of oocytes after prolonged ovary storage at 4° C in the domestic cat model. Theriogenology 144:152–157

    Article  CAS  PubMed  Google Scholar 

  • Pizzimenti S, Toaldo C, Pettazzoni P et al (2010) The" two-faced" effects of reactive oxygen species and the lipid peroxidation product 4-hydroxynonenal in the hallmarks of cancer. Cancers (Basel) 2:338–363

    Article  CAS  PubMed  Google Scholar 

  • Practice Committee of American Society for Reproductive Medicine (2019) Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertil Steril 112:1022–1033

    Article  Google Scholar 

  • Practice Committee of American Society for Reproductive Medicine (2014) Ovarian tissue cryopreservation: a committee opinion. Fertil Steril 101:1237–1243

    Article  Google Scholar 

  • Qiu M, Liu J, Han C et al (2014) The influence of ovarian stromal/theca cells during in vitro culture on steroidogenesis, proliferation and apoptosis of granulosa cells derived from the goat ovary. Reprod Domest Anim 49:170–176

    Article  CAS  PubMed  Google Scholar 

  • Rahimi G, Isachenko V, Todorov P et al (2009) Apoptosis in human ovarian tissue after conventional freezing or vitrification and xenotransplantation. CryoLetters 30:300–309

    CAS  PubMed  Google Scholar 

  • Rahimi G, Isachenko E, Sauer H et al (2003) Effect of different vitrification protocols for human ovarian tissue on reactive oxygen species and apoptosis. Reprod Fertil Dev 15:343–349

    Article  PubMed  Google Scholar 

  • Rajabi Z, Aliakbari F, Yazdekhasti H (2018) Female fertility preservation, clinical and experimental options. J Reprod Infertil 19:125

    PubMed  PubMed Central  Google Scholar 

  • Reiser E, Böttcher B, Minasch D et al (2020) Ovarian transposition. memo-Magazine Eur. Med Oncol 13:413–415

    Google Scholar 

  • Roberto Kalthur G, Barbato V et al (2021) Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants 10:337

    Article  Google Scholar 

  • Rocha CD, Soares MM, de Cássia Antonino D et al (2018) Positive effect of resveratrol against preantral follicles degeneration after ovarian tissue vitrification. Theriogenology 114:244–251

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Wallberg KA, Oktay K (2012) Options on fertility preservation in female cancer patients. Cancer Treat Rev 38:354–361

    Article  PubMed  Google Scholar 

  • Roness H, Meirow D (2019) FERTILITY PRESERVATION: Follicle reserve loss in ovarian tissue transplantation. Reproduction 158:F35–F44

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl M, Greve T, Andersen CY (2013) The safety of transplanting cryopreserved ovarian tissue in cancer patients: A review of the literature. J Assist Reprod Genet

  • Rowell E, Duncan F, Laronda M (2020) ASRM removes the experimental label from Ovarian Tissue Cryopreservation (OTC): pediatric research must continue. Fertil Steril Dialog

  • Salama M, Woodruff TK (2017) Anticancer treatments and female fertility: clinical concerns and role of oncologists in oncofertility practice. Expert Rev Anticancer Ther 17:687–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon AB, Richardson A, Pérez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48:642–655

    Article  CAS  PubMed  Google Scholar 

  • Scalercio SR, Amorim CA, Brito DC et al (2016) Trolox enhances follicular survival after ovarian tissue autograft in squirrel monkey (Saimiri collinsi). Reprod Fertil Dev 28:1854–1864

    Article  Google Scholar 

  • Shahri PAK, Chiti MC, Amorim CA (2019) Isolation and characterization of the human ovarian cell population for transplantation into an artificial ovary. Anim Reprod 16:39

    Article  Google Scholar 

  • Shaw JM, Jones GM (2003) Terminology associated with vitrification and other cryopreservation procedures for oocytes and embryos. Hum Reprod Update

  • Shaw JM, Oranratnachai A, Trounson AO (2000) Fundamental cryobiology of mammalian, oocytes and ovarian tissue. In: Theriogenology

  • Shi Q, Xie Y, Wang Y, Li S (2017) Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci Rep 7:8538

    Article  PubMed  PubMed Central  Google Scholar 

  • Shikanov A, Zhang Z, Xu M et al (2011) Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Eng part A 17:3095–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silber S, Goldsmith S (2022) Ovarian Tissue Cryopreservation and Transplantation: Scientific and Clinical Implications. In: Female and Male Fertility Preservation. Springer, pp 143–161

  • Silva Duarte ID, Gragnani A, Ferreira LM (2004) Dimethyl sulfoxide and oxidative stress on cultures of human keratinocytes. Can J Plast Surg 12:13–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva LM, Mbemya GT, Guerreiro DD et al (2018) Effect of catalase or alpha lipoic acid supplementation in the vitrification solution of ovine ovarian tissue. Biopreserv Biobank 16:258–269

    Article  CAS  PubMed  Google Scholar 

  • Sobinoff AP, Pye V, Nixon B et al (2012) Jumping the gun: smoking constituent BaP causes premature primordial follicle activation and impairs oocyte fusibility through oxidative stress. Toxicol Appl Pharmacol 260:70–80

    Article  CAS  PubMed  Google Scholar 

  • Soleimani R, Heytens E, Oktay K (2011) Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PLoS One 6:e19475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spears N, Lopes F, Stefansdottir A et al (2019) Ovarian damage from chemotherapy and current approaches to its protection. Hum Reprod Update 25:673–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachecki JJ, Cohen J (2004) An overview of oocyte cryopreservation. Reprod Biomed Online 9:152–163

    Article  PubMed  Google Scholar 

  • Steif PS, Palastro MC, Rabin Y (2007) The effect of temperature gradients on stress development during cryopreservation via vitrification. Cell Preserv Technol 5:104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroud JS, Mutch D, Rader J et al (2009) Effects of cancer treatment on ovarian function. Fertil Steril 92:417–427

    Article  CAS  PubMed  Google Scholar 

  • Sun TC, Liu XC, Yang SH et al (2020) Melatonin Inhibits Oxidative Stress and Apoptosis in Cryopreserved Ovarian Tissues via Nrf2/HO-1 Signaling Pathway. Front Mol Biosci 7

  • Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin

  • Suzuki H, Ishijima T, Maruyama S et al (2008) Beneficial effect of desialylated erythropoietin administration on the frozen-thawed canine ovarian xenotransplantation. J Assist Reprod Genet 25:571–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Yoshioka N, Takae S et al (2015) Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod 30:608–615

    Article  PubMed  Google Scholar 

  • Talebi A, Zavareh S, Kashani MH et al (2012) The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles. J Assist Reprod Genet 29:175–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura H, Nakamura Y, Korkmaz A et al (2009) Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril 92:328–343

    Article  CAS  PubMed  Google Scholar 

  • Telfer EE, Zelinski MB (2013) Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril 99:1523–1533

    Article  PubMed  PubMed Central  Google Scholar 

  • Thouas GA, Trounson AO, Wolvetang EJ, Jones GM (2004) Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol Reprod 71:1936–1942

    Article  CAS  PubMed  Google Scholar 

  • Ting AY, Mullen SF, Zelinski MB (2017) Vitrification of ovarian tissue for fertility preservation. In: Pediatric and Adolescent Oncofertility. Springer, pp 79–97

  • Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667–670

    Article  CAS  PubMed  Google Scholar 

  • Tsai-Turton M, Luderer U (2006) Opposing effects of glutathione depletion and follicle-stimulating hormone on reactive oxygen species and apoptosis in cultured preovulatory rat follicles. Endocrinology 147:1224–1236

    Article  CAS  PubMed  Google Scholar 

  • Tunc O, Tremellen K (2009) Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 26:537–544

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuncer S, Atilgan R, Pala Ş et al (2018) N-Acetylcysteine and benfotiamine protect autotransplanted ovarian tissue from ischemia-reperfusion injury: an experimental study. Exp Clin Transplant Off J Middle East Soc Organ Transplant

  • Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling. Role of NAD (P) H oxidase. Mol Cell Biochem 264:85–97

    Article  CAS  PubMed  Google Scholar 

  • Van Eyck A-S, Jordan BF, Gallez B et al (2009) Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril 92:374–381

    Article  PubMed  Google Scholar 

  • Wakasa I, Hayashi M, Abe Y, Suzuki H (2017) Distribution of follicles in canine ovarian tissues and xenotransplantation of cryopreserved ovarian tissues with even distribution of follicles. Reprod Domest Anim 52:219–223

    Article  PubMed  Google Scholar 

  • Wallace WHB, Thomson AB, Kelsey TW (2003) The radiosensitivity of the human oocyte. Hum Reprod. https://doi.org/10.1093/humrep/deg016

    Article  PubMed  Google Scholar 

  • Wallace WHB, Thomson AB, Saran F, Kelsey TW (2005) Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys 62:738–744

    Article  PubMed  Google Scholar 

  • Wang S, He G, Chen M et al (2017) The role of antioxidant enzymes in the ovaries. Oxid Med Cell Longev

  • Wang T, Zhao G, Liang XM et al (2014) Numerical simulation of the effect of superparamagnetic nanoparticles on microwave rewarming of cryopreserved tissues. Cryobiology 68:234–243

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Crowne E (2019) The impact of childhood cancer and its treatment on puberty and subsequent hypothalamic pituitary and gonadal function, in both boys and girls. Best Pract Res Clin Endocrinol Metab

  • Wo JY, Viswanathan AN (2009) Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. Int J Radiat Oncol Biol Phys 73:1304–1312

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Xie Y, Yang D, Ren D (2017) Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget 8:25310

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaribeygi H, Atkin SL, Sahebkar A (2019) A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol 234:1300–1312

    Article  CAS  PubMed  Google Scholar 

  • Yu P-L, Lin T-M, Wang S-W, Wang PS (2012) Antisteroidogenic effects of hydrogen peroxide on rat granulosa cells. Free Radic Res 46:718–725

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Gao J, Guo J et al (2014) Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes. PLoS One 9:e107447

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J-M, Wang H-C, Wang H-X et al (2013) Oxidative stress and activities of caspase-8,-9, and-3 are involved in cryopreservation-induced apoptosis in granulosa cells. Eur J Obstet Gynecol Reprod Biol 166:52–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wang S-M, Yao P-B et al (2015) Effects of L-carnitine on follicular survival and graft function following autotransplantation of cryopreserved-thawed ovarian tissues. Cryobiology 71:135–140

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang Q, Ma J et al (2013) Reactive oxygen species regulate FSH-induced expression of vascular endothelial growth factor via Nrf2 and HIF1α signaling in human epithelial ovarian cancer. Oncol Rep 29:1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Du W, Wang D et al (2011) Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol Reprod Dev 78:942–950

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Fu X, Hou Y et al (2009) Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos. Mol Reprod Dev Inc Gamete Res 76:1056–1063

    Article  CAS  Google Scholar 

  • Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive Oxygen Species (ROS)–Induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res - Fundam Mol Mech Mutagen 711:167–173. https://doi.org/10.1016/j.mrfmmm.2011.02.015

    Article  CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding for this work was provided by the National Science and Engineering Research Council (RGPIN-2017-06346 to JB).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the conception and writing of the manuscript.

Corresponding author

Correspondence to James D. Benson.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors declare no financial or non-financial conflict of interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Atefeh Najafi and Ebrahim Asadi are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, A., Asadi, E. & Benson, J.D. Ovarian tissue cryopreservation and transplantation: a review on reactive oxygen species generation and antioxidant therapy. Cell Tissue Res 393, 401–423 (2023). https://doi.org/10.1007/s00441-023-03794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03794-2

Keywords

Navigation