Skip to main content
Log in

Oxidative DNA damage impairs global sperm DNA methylation in infertile men

  • Andrology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Methylation of sperm DNA is impaired in many infertile men potentially adversely effecting reproductive outcomes. In somatic cells oxidative damage to DNA and hyperhomocysteinaemia are linked with DNA hypomethylation. The objective of this study was to investigate if these pathologies also impair sperm DNA methylation.

Methods

The relationship between sperm DNA quality, oxidative stress and serum homocysteine was analysed at study entry and after 3 months of antioxidant treatment.

Results

Overall a significant negative correlation was observed between sperm DNA methylation and sperm DNA fragmentation, as well as seminal reactive oxygen species (ROS) production. Sperm DNA methylation was not significantly related to serum homocysteine concentrations. Administration of an antioxidant supplement produced a significant fall in seminal ROS levels and sperm DNA fragmentation, while increasing sperm DNA methylation.

Conclusions

These results suggest that oxidative stress related damage to sperm DNA impedes the process of methylation, while antioxidant supplementation appears to have the potential to reduce DNA damage and normalize sperm DNA methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cox GF, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71(1):162–4.

    Article  CAS  PubMed  Google Scholar 

  2. Gosden R, et al. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet. 2003;361(9373):1975–7.

    Article  PubMed  Google Scholar 

  3. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72(1):156–60.

    Article  CAS  PubMed  Google Scholar 

  4. Lawrence LT, Moley KH. Epigenetics and assisted reproductive technologies: human imprinting syndromes. Semin Reprod Med. 2008;26(2):143–52.

    Article  CAS  PubMed  Google Scholar 

  5. Schaefer CB, et al. Epigenetic decisions in mammalian germ cells. Science. 2007;316(5823):398–9.

    Article  CAS  PubMed  Google Scholar 

  6. Thompson JG, et al. Epigenetic risks related to assisted reproductive technologies: short- and long-term consequences for the health of children conceived through assisted reproduction technology: more reason for caution? Hum Reprod. 2002;17(11):2783–6.

    Article  CAS  PubMed  Google Scholar 

  7. Benchaib M, et al. Quantitation by image analysis of global DNA methylation in human spermatozoa and its prognostic value in in vitro fertilization: a preliminary study. Fertil Steril. 2003;80(4):947–53.

    Article  PubMed  Google Scholar 

  8. Marques CJ, et al. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363(9422):1700–2.

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi H, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542–51.

    Article  CAS  PubMed  Google Scholar 

  10. Houshdaran S, et al. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE. 2007;2(12):e1289.

    Article  PubMed  CAS  Google Scholar 

  11. Marques CJ, et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 2008;14(2):67–74.

    Article  CAS  PubMed  Google Scholar 

  12. Doerksen T, Trasler JM. Developmental exposure of male germ cells to 5-azacytidine results in abnormal preimplantation development in rats. Biol Reprod. 1996;55(5):1155–62.

    Article  CAS  PubMed  Google Scholar 

  13. Doerksen T, Benoit G, Trasler JM. Deoxyribonucleic acid hypomethylation of male germ cells by mitotic and meiotic exposure to 5-azacytidine is associated with altered testicular histology. Endocrinology. 2000;141(9):3235–44.

    Article  CAS  PubMed  Google Scholar 

  14. Kelly TL, Li E, Trasler JM. 5-aza-2′-deoxycytidine induces alterations in murine spermatogenesis and pregnancy outcome. J Androl. 2003;24(6):822–30.

    CAS  PubMed  Google Scholar 

  15. Oakes CC, et al. Adverse effects of 5-aza-2′-deoxycytidine on spermatogenesis include reduced sperm function and selective inhibition of de novo DNA methylation. J Pharmacol Exp Ther. 2007;322(3):1171–80.

    Article  CAS  PubMed  Google Scholar 

  16. Pathak S, et al. Effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 locus-specific DNA methylation in rat spermatozoa and its association with embryo loss. Fertil Steril. 2008;91(Suppl 5):2253–63.

    Google Scholar 

  17. Anway MD, Skinner MK. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online. 2008;16(1):23–5.

    PubMed  Google Scholar 

  18. Anway MD, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.

    Article  CAS  PubMed  Google Scholar 

  19. Cisneros FJ. DNA methylation and male infertility. Front Biosci. 2004;9:1189–200.

    Article  CAS  PubMed  Google Scholar 

  20. Benchaib M, et al. Influence of global sperm DNA methylation on IVF results. Hum Reprod. 2005;20(3):768–73.

    Article  CAS  PubMed  Google Scholar 

  21. Trasler JM, et al. DNA methyltransferase is developmentally expressed in replicating and non-replicating male germ cells. Nucleic Acids Res. 1992;20(10):2541–5.

    Article  CAS  PubMed  Google Scholar 

  22. Numata M, Ono T, Iseki S. Expression and localization of the mRNA for DNA (cytosine-5)- methyltransferase in mouse seminiferous tubules. J Histochem Cytochem. 1994;42(9):1271–6.

    CAS  PubMed  Google Scholar 

  23. Jue K, et al. Developmental and hormonal regulation of DNA methyltransferase in the rat testis. Biol Reprod. 1995;52(6):1364–71.

    Article  CAS  PubMed  Google Scholar 

  24. Kerjean A, et al. Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet. 2000;9(14):2183–7.

    Article  CAS  PubMed  Google Scholar 

  25. Omisanjo OA, et al. DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer. Histochem Cell Biol. 2007;127(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  26. Ariel M, Cedar H, McCarrey J. Developmental changes in methylation of spermatogenesis-specific genes include reprogramming in the epididymis. Nat Genet. 1994;7(1):59–63.

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi H, et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet. 2009; in press

  28. Franco R, et al. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008;266(1):6–11.

    Article  CAS  PubMed  Google Scholar 

  29. Weitzman SA, et al. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci USA. 1994;91(4):1261–4.

    Article  CAS  PubMed  Google Scholar 

  30. Turk PW, et al. DNA adduct 8-hydroxyl-2′-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis. 1995;16(5):1253–5.

    Article  CAS  PubMed  Google Scholar 

  31. Valinluck V, et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004;32(14):4100–8.

    Article  CAS  PubMed  Google Scholar 

  32. Hepburn PA, Margison GP, Tisdale MJ. Enzymatic methylation of cytosine in DNA is prevented by adjacent O6-methylguanine residues. J Biol Chem. 1991;266(13):7985–7.

    CAS  PubMed  Google Scholar 

  33. Yi P, et al. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem. 2000;275(38):29318–23.

    Article  CAS  PubMed  Google Scholar 

  34. Jamaluddin MD, et al. Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin A gene. Blood. 2007;110(10):3648–55.

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet. 2001;10(5):433–43.

    Article  CAS  PubMed  Google Scholar 

  36. Bezold G, Lange M, Peter RU. Homozygous methylenetetrahydrofolate reductase C677T mutation and male infertility. N Engl J Med. 2001;344(15):1172–3.

    Article  CAS  PubMed  Google Scholar 

  37. Stuppia L, et al. The methylenetethrahydrofolate reductase (MTHFR) C677T polymorphism and male infertility in Italy. J Endocrinol Investig. 2003;26(7):620–2.

    CAS  Google Scholar 

  38. Singh K, et al. Mutation C677T in the methylenetetrahydrofolate reductase gene is associated with male infertility in an Indian population. Int J Androl. 2005;28(2):115–9.

    Article  CAS  PubMed  Google Scholar 

  39. Paracchini V, Garte S, Taioli E. MTHFR C677T polymorphism, GSTM1 deletion and male infertility: a possible suggestion of a gene-gene interaction? Biomarkers. 2006;11(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  40. Benchaib M, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18(5):1023–8.

    Article  PubMed  Google Scholar 

  41. Gandini L, et al. Study of apoptotic DNA fragmentation in human spermatozoa. Hum Reprod. 2000;15(4):830–9.

    Article  CAS  PubMed  Google Scholar 

  42. Tunc O, Thompson J, Tremellen K. Development of the NBT assay as a marker of sperm oxidative stress. Int J Androl. 2008. doi:10.1111/j.1365-2605.2008.00941.x.

  43. Esfandiari N, et al. Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl. 2003;24(6):862–70.

    CAS  PubMed  Google Scholar 

  44. Selhub J, et al. Serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey (1991–1994): population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med. 1999;131(5):331–9.

    CAS  PubMed  Google Scholar 

  45. Tavalaee M, Razavi S, Nasr-Esfahani MH. Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril. 2009;91(4):1119–26.

    Google Scholar 

  46. Aitken RJ. Founders’ lecture. Human spermatozoa: fruits of creation, seeds of doubt. Reprod Fertil Dev. 2004;16(7):655–64.

    Article  PubMed  Google Scholar 

  47. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Updat. 2008;14(3):243–58.

    Article  CAS  Google Scholar 

  48. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14(6):727–33.

    Article  CAS  PubMed  Google Scholar 

  49. Lee CR, et al. Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. Hum Mol Genet. 2006;15(10):1640–9.

    Article  CAS  PubMed  Google Scholar 

  50. Dhillon VS, Shahid M, Husain SA. Associations of MTHFR DNMT3b 4977 bp deletion in mtDNA and GSTM1 deletion, and aberrant CpG island hypermethylation of GSTM1 in non-obstructive infertility in Indian men. Mol Hum Reprod. 2007;13(4):213–22.

    Article  CAS  PubMed  Google Scholar 

  51. Fernandez-Gonzalez R, et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78(4):761–72.

    Article  CAS  PubMed  Google Scholar 

  52. Gicquel C, et al. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet. 2005;37(9):1003–7.

    Article  CAS  PubMed  Google Scholar 

  53. Netchine I, et al. 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab. 2007;92(8):3148–54.

    Article  CAS  PubMed  Google Scholar 

  54. Amor DJ, Halliday J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod. 2008;23(12):2826–34.

    Article  PubMed  Google Scholar 

  55. Zini A, et al. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23(12):2663–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the participants and the staff of Repromed, especially Margaret Szemis for contribution to data collection and Dr. Megan Mitchell for her support in the conduct of the methylation assays. The authors acknowledge financial support from The Colin Matthews Research Fund (University of Adelaide) and Bayer Consumer Care, Australia. Ms Tunc is a recipient of a Faculty of Health Sciences Postgraduate Scholarship from The University of Adelaide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelton Tremellen.

Additional information

Capsule

Oxidative stress impedes sperm DNA methylation, while antioxidant supplementation can reduce DNA damage and normalize sperm DNA methylation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunc, O., Tremellen, K. Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 26, 537–544 (2009). https://doi.org/10.1007/s10815-009-9346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-009-9346-2

Keywords

Navigation