Skip to main content

Advertisement

Log in

Human umbilical cord mesenchymal stem cells in type 2 diabetes mellitus: the emerging therapeutic approach

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The umbilical cord has been proved to be an easy-access, reliable, and useful source of mesenchymal stem cells (MSC) for clinical applications due to its primitive, immunomodulatory, non-immunogenic, secretory and paracrine, migratory, proliferative, and multipotent properties. This set of characteristics has recently attracted great research interest in the fields of nanotechnology and regenerative medicine and cellular therapy. Accumulating evidence supports a pronounced therapeutic potential of MSC in many different pathologies, from hematology to immunology, wound-healing, tissue regeneration, and oncology. Diabetes mellitus, branded the epidemic of the century, is considered a chronic metabolic disorder, representing a major burden for health system sustainability and an important public health challenge to modern societies. The available treatments for type 2 diabetes mellitus (T2DM) still rely mainly on combinations of oral antidiabetic agents with lifestyle and nutritional adjustments. Despite the continuous development of novel and better hypoglycemic drugs, their efficacy is limited in the installment and progression of silent T2DM complications. T2DM comorbidities and mortality rates still make it a serious, common, costly, and long-term manageable disease. Recently, experimental models, preclinical observations, and clinical studies have provided some insights and preliminary promising results using umbilical cord MSCs to treat and manage diabetes. This review focuses on the latest research and applications of human-derived umbilical cord MSC in the treatment and management of T2DM, exploring and systematizing the key effects of both umbilical cord MSC and its factor-rich secretome accordingly with the major complications associated to T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acosta JB, del Barco DG, Vera DC, Savigne W, Lopez-Saura P, Guillen Nieto G, Schultz GS (2008) The pro-inflammatory environment in recalcitrant diabetic foot wounds. Int Wound J 5:530–539

    Article  PubMed  PubMed Central  Google Scholar 

  • Adamiak M, Cheng G, Bobis-Wozowicz S, Zhao L, Kedracka-Krok S, Samanta A, Karnas E, Xuan YT, Skupien-Rabian B, Chen X, Jankowska U, Girgis M, Sekula M, Davani A, Lasota S, Vincent RJ, Sarna M, Newell KL, Wang OL, Dudley N, Madeja Z, Dawn B, Zuba-Surma EK (2018) Induced pluripotent stem cell (iPSC)-derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ Res 122:296–309

    Article  CAS  PubMed  Google Scholar 

  • Ahmad J (2016) The diabetic foot Diabetes Metab Syndr 10:48–60

    Article  PubMed  Google Scholar 

  • Ambiru S, Furuyama N, Aono M, Otsuka H, Suzuki T, Miyazaki M (2008) Analysis of risk factors associated with complications of hyperbaric oxygen therapy. J Crit Care 23:295–300

    Article  PubMed  Google Scholar 

  • Armstrong DG, Boulton AJM, Bus SA (2017) Diabetic foot ulcers and their recurrence. N Engl J Med 376:2367–2375

    Article  PubMed  Google Scholar 

  • Association AD (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1):S62-67

    Article  Google Scholar 

  • Association AD (2019) 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes. Diabetes Care 42:S90–S102

    Article  Google Scholar 

  • Avercenc-Leger L, Guerci P, Virion JM, Cauchois G, Hupont S, Rahouadj R, Magdalou J, Stoltz JF, Bensoussan D, Huselstein C, Reppel L (2017) Umbilical cord-derived mesenchymal stromal cells: predictive obstetric factors for cell proliferation and chondrogenic differentiation. Stem Cell Res Ther 8:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bai Y, Cui M, Meng Z, Shen L, He Q, Zhang X, Chen F, Xiao J (2009) Ectopic expression of angiopoietin-1 promotes neuronal differentiation in neural progenitor cells through the Akt pathway. Biochem Biophys Res Commun 378:296–301

    Article  CAS  PubMed  Google Scholar 

  • Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5:121–143

    Article  PubMed  Google Scholar 

  • Bedogni B, Warneke JA, Nickoloff BJ, Giaccia AJ, Powell MB (2008) Notch1 is an effector of Akt and hypoxia in melanoma development. J Clin Invest 118:3660–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhansali S, Dutta P, Kumar V, Yadav MK, Jain A, Mudaliar S, Bhansali S, Sharma RR, Jha V, Marwaha N, Khandelwal N, Srinivasan A, Sachdeva N, Hawkins M, Bhansali A (2017) Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: a randomized, placebo-controlled comparative study. Stem Cells Dev 26:471–481

    Article  CAS  PubMed  Google Scholar 

  • Blakytny R, Jude EB (2009) Altered molecular mechanisms of diabetic foot ulcers. Int J Low Extrem Wounds 8:95–104

    Article  PubMed  Google Scholar 

  • Bloomgarden ZT (2008) Diabetic neuropathy. Diabetes Care 31:616–621

    Article  PubMed  Google Scholar 

  • Bos JL (2006) Epac proteins: multi-purpose cAMP targets. Trends Biochem Sci 31:680–686

    Article  CAS  PubMed  Google Scholar 

  • Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117:1219–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buccheri D, Piraino D, Andolina G, Cortese B (2016) Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. J Thorac Dis 8:E1150–E1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Bugianesi E, McCullough AJ, Marchesini G (2005) Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology (Baltimore, MD) 42:987–1000

    Article  CAS  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  CAS  PubMed  Google Scholar 

  • Cao Q, Wang X, Jia L, Mondal AK, Diallo A, Hawkins GA, Das SK, Parks JS, Yu L, Shi H, Shi H, Xue B (2014) Inhibiting DNA methylation by 5-aza-2’-deoxycytidine ameliorates atherosclerosis through suppressing macrophage inflammation. Endocrinology 155:4925–4938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC (2001) Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32:2426–2432

    Article  CAS  PubMed  Google Scholar 

  • Carmona G, Chavakis E, Koehl U, Zeiher AM, Dimmeler S (2008) Activation of Epac stimulates integrin-dependent homing of progenitor cells. Blood 111:2640–2646

    Article  CAS  PubMed  Google Scholar 

  • Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne) 4:37

    Article  Google Scholar 

  • Chang Y, Dong M, Wang Y, Yu H, Sun C, Jiang X, Chen W, Wang X, Xu N, Liu W, Jin N (2019) GLP-1 gene-modified human umbilical cord mesenchymal stem cell line improves blood glucose level in type 2 diabetic mice. Stem Cells Int 27:4961865

    Google Scholar 

  • Charnogursky G, Lee H, Lopez N (2014) Diabetic neuropathy. Handb Clin Neurol 120:773–785

    Article  PubMed  Google Scholar 

  • Chen G, Fan XY, Zheng XP, Jin YL, Liu Y, Liu SC (2020) Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance via PTEN-mediated crosstalk between the PI3K/Akt and Erk/MAPKs signaling pathways in the skeletal muscles of db/db mice. Stem Cell Res Ther 11:401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Ning R, Zacharek A, Cui C, Cui X, Yan T, Venkat P, Zhang Y, Chopp M (2016a) MiR-126 contributes to human umbilical cord blood cell-induced neurorestorative effects after stroke in type-2 diabetic mice. Stem Cells 34:102–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    Article  CAS  PubMed  Google Scholar 

  • Chen MT, Zhao YT, Zhou LY, Li M, Zhang Q, Han Q, Xiao XH (2021) Exosomes derived from human umbilical cord mesenchymal stem cells enhance insulin sensitivity in insulin resistant human adipocytes. Curr Medl Sci 41:87–93

    Article  CAS  Google Scholar 

  • Chen S, Zhang W, Wang JM, Duan HT, Kong JH, Wang YX, Dong M, Bi X, Song J (2016b) Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells. Int J Ophthalmol 9:41–47

    PubMed  PubMed Central  Google Scholar 

  • Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet (London, England) 376:124–136

    Article  Google Scholar 

  • Crivelli B, Chlapanidas T, Perteghella S, Lucarelli E, Pascucci L, Brini AT, Ferrero I, Marazzi M, Pessina A, Torre ML, CellG, IMS (2017) Mesenchymal stem/stromal cell extracellular vesicles: from active principle to next generation drug delivery system. J Control Release 262:104–117

    Article  CAS  PubMed  Google Scholar 

  • Curtis TM, Gardiner TA, Stitt AW (2009) Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond) 23:1496–1508

    Article  CAS  Google Scholar 

  • D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res Off J Am Soc Bone Miner Res 14:1115–1122

    Article  CAS  Google Scholar 

  • Davies JE, Walker JT, Keating A (2017) Concise review: Wharton’s jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl Med 6:1620–1630

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis FM, Kimball A, Boniakowski A, Gallagher K (2018) Dysfunctional wound healing in diabetic foot ulcers: new crossroads. Curr Diab Rep 18:2

    Article  PubMed  Google Scholar 

  • de Groot SC, Sliedregt K, van Benthem PPG, Rivolta MN, Huisman MA (2020) Building an artificial stem cell niche: prerequisites for future 3D-formation of inner ear structures-toward 3D inner ear biotechnology. Anat Rec (Hoboken) 303:408–426

    Article  Google Scholar 

  • DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1:15019

    Article  PubMed  Google Scholar 

  • Diepold R, Kreuter J, Himber J, Gurny R, Lee VH, Robinson JR, Saettone MF, Schnaudigel OE (1989) Comparison of different models for the testing of pilocarpine eyedrops using conventional eyedrops and a novel depot formulation (nanoparticles). Graefes Arch Clin Exp Ophthalmol 227:188–193

    Article  CAS  PubMed  Google Scholar 

  • Doan CC, Le TL, Hoang NS, Doan NT, Le VD, Do MS (2014) Differentiation of umbilical cord lining membrane-derived mesenchymal stem cells into endothelial-like cells. Iran Biomed J 18:67–75

    CAS  PubMed  Google Scholar 

  • Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107

    Article  CAS  PubMed  Google Scholar 

  • Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, Gueripel X, Ellingsgaard H, Schneider MK, Biollaz G, Fontana A, Reinecke M, Homo-Delarche F, Donath MY (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370

    Article  CAS  PubMed  Google Scholar 

  • Ende N (2000) The Berashis cell: a review–is it similar to the embryonic stem cell? J Med 31:113–130

    CAS  PubMed  Google Scholar 

  • Ende N, Chen R, Reddi AS (2004) Transplantation of human umbilical cord blood cells improves glycemia and glomerular hypertrophy in type 2 diabetic mice. Biochem Biophys Res Commun 321:168–171

    Article  CAS  PubMed  Google Scholar 

  • Eurich DT, Weir DL, Majumdar SR, Tsuyuki RT, Johnson JA, Tjosvold L, Vanderloo SE, McAlister FA (2013) Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circ Heart Fail 6:395–402

    Article  CAS  PubMed  Google Scholar 

  • Everett E, Mathioudakis N (2018) Update on management of diabetic foot ulcers. Ann N Y Acad Sci 1411:153–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezquer F, Ezquer M, Arango-Rodriguez M, Conget P (2014) Could donor multipotent mesenchymal stromal cells prevent or delay the onset of diabetic retinopathy? Acta Ophthalmol 92:e86-95

    Article  PubMed  Google Scholar 

  • Ezquer F, Ezquer M, Simon V, Pardo F, Yañez A, Carpio D, Conget P (2009) Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 15:1354–1365

    Article  CAS  Google Scholar 

  • Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet (London, England) 366:1736–1743

    Article  Google Scholar 

  • Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Goncalves RM (2018) Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol 9:2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiori A, Terlizzi V, Kremer H, Gebauer J, Hammes HP, Harmsen MC, Bieback K (2018) Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiol 223:729–743

    Article  CAS  Google Scholar 

  • Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, Armugam A, Jeyaseelan K, Choolani M, Biswas A, Bongso A (2014) Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds. J Cell Biochem 115:290–302

    Article  CAS  PubMed  Google Scholar 

  • Freilich RW, Woodbury ME, Ikezu T (2013) Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One 8:e79416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S (2002) Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol 133:70–77

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Cheng Y, Hao H, Yin Y, Xue J, Zhang Q, Li L, Liu J, Xie Z, Yu S, Li B, Han W, Mu Y (2019) Decitabine assists umbilical cord-derived mesenchymal stem cells in improving glucose homeostasis by modulating macrophage polarization in type 2 diabetic mice. Stem Cell Res Ther 10:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448

    Article  CAS  PubMed  Google Scholar 

  • Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 7:581–588

    Article  CAS  Google Scholar 

  • Gruessner RW, Gruessner AC (2013) The current state of pancreas transplantation. Nat Rev Endocrinol 9:555–562

    Article  CAS  PubMed  Google Scholar 

  • Guan LX, Guan H, Li HB, Ren CA, Liu L, Chu JJ, Dai LJ (2015) Therapeutic efficacy of umbilical cord-derived mesenchymal stem cells in patients with type 2 diabetes. Exp Ther Med 9:1623–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrouahen BS, Sidahmed H, Al Sulaiti A, Al Khulaifi M, Cugno C (2019) Enhancing mesenchymal stromal cell immunomodulation for treating conditions influenced by the immune system. Stem Cells Int 2019:7219297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, Azadmanesh K, Habibi-Anbouhi M, Heremans Y, De Leu N, Heimberg H, Ravassard P, Shokrgozar MA, Baharvand H (2015) Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep 5:9322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Sun T, Han Y, Lin L, Liu C, Liu J, Yan G, Tao R (2019) Human umbilical cord mesenchymal stem cells implantation accelerates cutaneous wound healing in diabetic rats via the Wnt signaling pathway. Eur J Med Res 24:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Han YF, Sun TJ, Han YQ, Xu G, Liu J, Tao R (2015) Clinical perspectives on mesenchymal stem cells promoting wound healing in diabetes mellitus patients by inducing autophagy. Eur Rev Med Pharmacol Sci 19:2666–2670

    PubMed  Google Scholar 

  • Hashemi SS, Mohammadi AA, Kabiri H, Hashempoor MR, Mahmoodi M, Amini M, Mehrabani D (2019) The healing effect of Wharton’s jelly stem cells seeded on biological scaffold in chronic skin ulcers: a randomized clinical trial. J Cosmet Dermatol 18:1961–1967

    Article  PubMed  Google Scholar 

  • Herman GA, Bergman A, Liu F, Stevens C, Wang AQ, Zeng W, Chen L, Snyder K, Hilliard D, Tanen M, Tanaka W, Meehan AG, Lasseter K, Dilzer S, Blum R, Wagner JA (2006) Pharmacokinetics and pharmacodynamic effects of the oral DPP-4 inhibitor sitagliptin in middle-aged obese subjects. J Clin Pharmacol 46:876–886

    Article  CAS  PubMed  Google Scholar 

  • Herrmann G, Haverich A, Ziemer G, Luhmer I, Kallfelz HC, Borst HG (1988) Orthotopic heart transplantation in childhood and adolescence. Asian Cardiovasc Thorac Ann 136:327–330

    CAS  Google Scholar 

  • Hinnen DA (2015) Therapeutic options for the management of postprandial glucose in patients with type 2 diabetes on basal insulin. Clin Diabetes 33:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Holz GG (2004) Epac: a new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53:5–13

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang F, Sun R, Wang Z, Yu X, Wang L, Gao H, Zhao W, Yan S, Wang Y (2014) Effect of combined therapy of human Wharton’s jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats. Endocrine 45:279–287

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang Y, Gong H, Yu C, Guo C, Wang F, Yan S, Xu H (2016) Long term effect and safety of Wharton’s jelly-derived mesenchymal stem cells on type 2 diabetes. Exp Ther Med 12:1857–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H, Chen Y, Zhao W, Jia Z, Yan S, Wang Y (2013) Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 60:347–357

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Ozaki K, Sato H, Mizuno H, Susumu S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Satoshi S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51:1087–1099

    Article  CAS  PubMed  Google Scholar 

  • Issa JP (2005) Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection. Nat Clin Pract Oncol 2(Suppl 1):S24-29

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Shan K, Qun-Wang X, Zhou RM, Yang H, Liu C, Li YJ, Yao J, Li XM, Shen Y, Cheng H, Yuan J, Zhang YY, Yan B (2016) Long non-coding RNA-MIAT promotes neurovascular remodeling in the eye and brain. Oncotarget 7:49688–49698

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Xu J (2020) Immune modulation by mesenchymal stem cells. Cell Prolif 53:e12712

    Article  PubMed  Google Scholar 

  • Johnston DG, Alberti KGMM, Wright R, Smith-Laing G, Stewart AM, Sherlock S, Faber O, Binder C (1978) C-peptide and insulin in liver disease. Diabetes 27:201–206

    Article  CAS  PubMed  Google Scholar 

  • Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5:933–946

    Article  PubMed  Google Scholar 

  • Jung JA, Yoon YD, Lee HW, Kang SR, Han SK (2018) Comparison of human umbilical cord blood-derived mesenchymal stem cells with healthy fibroblasts on wound-healing activity of diabetic fibroblasts. Int Wound J 15:133–139

    Article  PubMed  Google Scholar 

  • Jung KH, Uhm YK, Lim YJ, Yim SV (2011) Human umbilical cord blood-derived mesenchymal stem cells improve glucose homeostasis in rats with liver cirrhosis. Int J Oncol 39:137–143

    CAS  PubMed  Google Scholar 

  • Kassem DH, Kamal MM, El-Kholy AE-LG, El-Mesallamy HO (2016) Exendin-4 enhances the differentiation of Wharton’s jelly mesenchymal stem cells into insulin-producing cells through activation of various β-cell markers. Stem Cell Res Ther 7:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim KS, Choi YK, Kim MJ, Hwang JW, Min K, Jung SY, Kim SK, Choi YS, Cho YW (2020) Umbilical cord-mesenchymal stem cell-conditioned medium improves insulin resistance in C2C12 cell. Diabetes Metab J 32662257

  • Kong D, Zhuang X, Wang D, Qu H, Jiang Y, Li X, Wu W, Xiao J, Liu X, Liu J, Li A, Wang J, Dou A, Wang Y, Sun J, Lv H, Zhang G, Zhang X, Chen S, Ni Y, Zheng C (2014) Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clin Lab 60:1969–1976

    Article  CAS  PubMed  Google Scholar 

  • L PK, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K, Verma RS (2019) The mesenchymal stem cell secretome:a new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev 46:1–9

  • Laso-Garcia F, Diekhorst L, Gomez-de Frutos MC, Otero-Ortega L, Fuentes B, Ruiz-Ares G, Diez-Tejedor E, Gutierrez-Fernandez M (2019) Cell-based therapies for stroke: promising solution or dead end? Mesenchymal stem cells and comorbidities in preclinical stroke research. Front Neurol 10:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S, Taylor HR (2016) Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 39:1643–1649

    Article  PubMed  Google Scholar 

  • Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim MH, Han HJ (2009) Arachidonic acid potentiates hypoxia-induced VEGF expression in mouse embryonic stem cells: involvement of Notch, Wnt, and HIF-1alpha. Am J Physiol Cell Physiol 297:C207-216

    Article  CAS  PubMed  Google Scholar 

  • Leite C, Silva NT, Mendes S, Ribeiro A, de Faria JP, Lourenco T, dos Santos F, Andrade PZ, Cardoso CM, Vieira M, Paiva A, da Silva CL, Cabral JM, Relvas JB, Graos M (2014) Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS One 9:e111059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li PA, Gisselsson L, Keuker J, Vogel J, Smith ML, Kuschinsky W, Siesjo BK (1998) Hyperglycemia-exaggerated ischemic brain damage following 30 min of middle cerebral artery occlusion is not due to capillary obstruction. Brain Res 804:36–44

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Zheng ZH, Li XY, Guo J, Zhang Y, Li H, Wang YW, Ren J, Wu ZB (2013) Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies. Curr Pharm Des 19:4893–4899

    Article  CAS  PubMed  Google Scholar 

  • Liang F, Kume S, Koya D (2009) SIRT1 and insulin resistance. Nat Rev Endocrinol 5:367–373

    Article  CAS  PubMed  Google Scholar 

  • Liau LL, Ruszymah BHI, Ng MH, Law JX (2020) Characteristics and clinical applications of Wharton’s jelly-derived mesenchymal stromal cells. Curr Res Transl Med 68:5–16

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Lee HT, Lee SD, Lee W, Cho CW, Lin SZ, Wang HJ, Okano H, Su CY, Yu YL, Hsu CY, Shyu WC (2013) Role of HIF-1alpha-activated Epac1 on HSC-mediated neuroplasticity in stroke model. Neurobiol Dis 58:76–91

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Huang S (2013) Bioengineered skin substitutes: key elements and novel design for biomedical applications. Int Wound J 10:365–371

    Article  PubMed  Google Scholar 

  • Maezawa Y, Takemoto M, Yokote K (2015) Cell biology of diabetic nephropathy: roles of endothelial cells, tubulointerstitial cells and podocytes. J Diabetes Investig 6:3–15

    Article  PubMed  Google Scholar 

  • Majore I, Moretti P, Hass R, Kasper C (2009) Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord. Cell Commun Signal 7:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majore I, Moretti P, Stahl F, Hass R, Kasper C (2011) Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Rev Rep 7:17–31

    Article  PubMed  Google Scholar 

  • Manferdini C, Maumus M, Gabusi E, Piacentini A, Filardo G, Peyrafitte JA, Jorgensen C, Bourin P, Fleury-Cappellesso S, Facchini A, Noël D, Lisignoli G (2013) Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum 65:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Marti-Centelles R, Murga J, Falomira E, Carda M, Marco JA (2017) Synthesis and biological evaluation of imines structurally related to resveratrol as dual inhibitors of VEGF protein secretion and hTERT gene expression. Nat Prod Commun 12:699–703

    PubMed  Google Scholar 

  • McNelis JC, Olefsky JM (2014) Macrophages, immunity, and metabolic disease. Immunity 41:36–48

    Article  CAS  PubMed  Google Scholar 

  • Meza Letelier CE, San Martín Ojeda CA, Ruiz Provoste JJ, Frugone Zaror CJ (2017) Pathophysiology of diabetic nephropathy: a literature review. Medwave 17:e6839

    Article  PubMed  Google Scholar 

  • Mo M, Wang S, Zhou Y, Li H, Wu Y (2016) Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci 73:3311–3321

    Article  CAS  PubMed  Google Scholar 

  • Moon KC, Lee JS, Han SK, Lee HW, Dhong ES (2017) Effects of human umbilical cord blood-derived mesenchymal stromal cells and dermal fibroblasts on diabetic wound healing. Cytotherapy 19:821–828

    Article  CAS  PubMed  Google Scholar 

  • Moradian S, Ebrahimi M, Kanaani A, Faramarzi A, Safi S (2020) Topical umbilical cord serum for corneal epithelial efects after diabetic vitrectomy. J Ophthalmic Vis Res 15:160–165

    PubMed  PubMed Central  Google Scholar 

  • Moreira A, Kahlenberg S, Hornsby P (2017) Therapeutic potential of mesenchymal stem cells for diabetes. J Mol Endocrinol 59:R109–R120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriscot C, de Fraipont F, Richard MJ, Marchand M, Savatier P, Bosco D, Favrot M, Benhamou PY (2005) Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23:594–603

    Article  CAS  PubMed  Google Scholar 

  • Muller KA, Ryals JM, Feldman EL, Wright DE (2008) Abnormal muscle spindle innervation and large-fiber neuropathy in diabetic mice. Diabetes 57:1693–1701

    Article  CAS  PubMed  Google Scholar 

  • Nagaishi K, Mizue Y, Chikenji T, Otani M, Nakano M, Saijo Y, Tsuchida H, Ishioka S, Nishikawa A, Saito T, Fujimiya M (2017) Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci Rep 7:8484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Najafian B, Alpers CE, Fogo AB (2011) Pathology of human diabetic nephropathy. Contrib Nephrol 170:36–47

    Article  PubMed  Google Scholar 

  • Namkoong S, Kim CK, Cho YL, Kim JH, Lee H, Ha KS, Choe J, Kim PH, Won MH, Kwon YG, Shim EB, Kim YM (2009) Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling. Cell Signal 21:906–915

    Article  CAS  PubMed  Google Scholar 

  • Newcomb JD, Ajmo CT Jr, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE (2006) Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant 15:213–223

    Article  PubMed  Google Scholar 

  • Noh H, Yu MR, Kim HJ, Jeon JS, Kwon SH, Jin SY, Lee J, Jang J, Park JO, Ziyadeh F, Han DC, Lee HB (2012) Uremia induces functional incompetence of bone marrow-derived stromal cells. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association 27:218–225

    Article  CAS  Google Scholar 

  • Nyenwe EA, Jerkins TW, Umpierrez GE, Kitabchi AE (2011) Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. Metab Clin Exp 60:1–23

    Article  CAS  PubMed  Google Scholar 

  • Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50

    Article  CAS  PubMed  Google Scholar 

  • Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  CAS  PubMed  Google Scholar 

  • Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A (2013) Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care (New Rochelle) 2:215–224

    Article  Google Scholar 

  • Pan X-H, Huang X, Ruan G-P, Pang R-Q, Chen Q, Wang J-X, He J, Zhao J, Cai X-M, Zhao N, Chen Y, Zhu X-Q (2017) Umbilical cord mesenchymal stem cells are able to undergo differentiation into functional islet-like cells in type 2 diabetic tree shrews. Mol Cell Probes 34:1–12

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou-Marketou N, Paschou SA, Marketos N, Adamidi S, Adamidis S, Kanaka-Gantenbein C (2018) Diabetic nephropathy in type 1 diabetes. Minerva Med 109:218–228

    Article  PubMed  Google Scholar 

  • Papanas N, Eleftheriadou I, Tentolouris N, Maltezos E (2012) Advances in the topical treatment of diabetic foot ulcers. Curr Diabetes Rev 8:209–218

    Article  CAS  PubMed  Google Scholar 

  • Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Hwang I, Hwang SH, Han H, Ha H (2012a) Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res Clin Pract 98:465–473

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Park J, Hwang SH, Han H, Ha H (2012b) Delayed treatment with human umbilical cord blood-derived stem cells attenuates diabetic renal injury. Transplant Proc 44:1123–1126

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kim EY, Ghil GS, Joo WS, Wang KC, Kim YS, Lee YJ, Lim J (2003) Genetically modified human embryonic stem cells relieve symptomatic motor behavior in a rat model of Parkinson’s disease. Neurosci Lett 353:91–94

    Article  CAS  PubMed  Google Scholar 

  • Park WS, Ahn SY, Sung SI, Ahn JY, Chang YS (2018) Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res 83:214–222

    Article  CAS  PubMed  Google Scholar 

  • Pena-Villalobos I, Casanova-Maldonado I, Lois P, Prieto C, Pizarro C, Lattus J, Osorio G, Palma V (2018) Hyperbaric oxygen increases stem cell proliferation, angiogenesis and wound-healing ability of WJ-MSCs in diabetic mice. Front Physiol 9:995

    Article  PubMed  PubMed Central  Google Scholar 

  • Periasamy M, Herrera JL, Reis FCG (2017) Skeletal muscle thermogenesis and Its role in whole body energy metabolism. Diabetes Metab J 41:327–336

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry HD, Foulks GN, Thoft RA, Tolentino FI (1978) Corneal complications after closed vitrectomy through the pars plana. Arch Ophthalmol (Chicago, Ill : 1960) 96:1401–1403

  • Qi C, Mao X, Zhang Z, Wu H (2017) Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res 2017:8637138

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin HL, Zhu XH, Zhang B, Zhou L, Wang WY (2016) Clinical evaluation of human umbilical cord mesenchymal stem cell transplantation after angioplasty for diabetic foot. Exp Clin Endocrinol Diabetes 124:497–503

    Article  CAS  PubMed  Google Scholar 

  • Raj V, Claudine S, Subramanian A, Tam K, Biswas A, Bongso A, Fong CY (2019) Histological, immunohistochemical, and genomic evaluation of excisional and diabetic wounds treated with human Wharton’s jelly stem cells with and without a nanocarrier. J Cell Biochem

  • Rigor J, Martins-Mendes D, Monteiro-Soares M (2020) Risk factors for mortality in patients with a diabetic foot ulcer: a cohort study. Eur J Intern Med 71:107–110

    Article  PubMed  Google Scholar 

  • Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    Article  PubMed  Google Scholar 

  • Ryan EA, Lakey JRT, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabinovitch A, Elliott JF, Bigam D, Kneteman NM, Warnock GL, Larsen I, Shapiro AMJ (2001) Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50:710

    Article  CAS  PubMed  Google Scholar 

  • Saeedi P, Halabian R, Imani Fooladi AA (2019) A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig 6:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schugar RC, Chirieleison SM, Wescoe KE, Schmidt BT, Askew Y, Nance JJ, Evron JM, Peault B, Deasy BM (2009) High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol 2009:789526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Secco M, Moreira YB, Zucconi E, Vieira NM, Jazedje T, Muotri AR, Okamoto OK, Verjovski-Almeida S, Zatz M (2009) Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev Rep 5:387–401

    Article  CAS  PubMed  Google Scholar 

  • Shah R, Jindal RM (2003) Reversal of diabetes in the rat by injection of hematopoietic stem cells infected with recombinant adeno-associated virus containing the preproinsulin II gene. Pancreatology: official journal of the International Association of Pancreatology (IAP) 3:422–428

    Article  CAS  Google Scholar 

  • Shi H, Xu X, Zhang B, Xu J, Pan Z, Gong A, Zhang X, Li R, Sun Y, Yan Y, Mao F, Qian H, Xu W (2017) 3,3’-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing. Theranostics 7:1674–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha C, Zhao L, Chen K, He H, Mo Z (2013) Enhanced healing of diabetic wounds by subcutaneous administration of human umbilical cord derived stem cells and their conditioned media. Int J Endocrinol 2013:592454

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu Y, Yang C, Ji X, Zhang L, Bi Y, Yang K, Gong M, Liu X, Guo Q, Su Y, Qu X, Nan G, Zhao C, Zeng Z, Yu X, Zhang R, Yan S, Lei J, Wu K, Wu Y, An L, Huang S, Gong C, Yuan C, Liu W, Huang B, Feng Y, Zhang B, Dai Z, Shen Y, Luo W, Wang X, Haydon RC, Luu HH, Reid RR, Wolf JM, Lee MJ, He TC, Li Y (2018) Reversibly immortalized human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are responsive to BMP9-induced osteogenic and adipogenic differentiation. J Cell Biochem 119:8872–8886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer AJ, Tassiopoulos A, Kirsner RS (2018) Evaluation and management of lower-extremity ulcers. N Engl J Med 378:302–303

    PubMed  Google Scholar 

  • Snyder BJ, Waldman BJ (2009) Venous thromboembolism prophylaxis and wound healing in patients undergoing major orthopedic surgery. Adv Skin Wound Care 22:311–315

    Article  PubMed  Google Scholar 

  • Sobolewski K, Malkowski A, Bankowski E, Jaworski S (2005) Wharton’s jelly as a reservoir of peptide growth factors. Placenta 26:747–752

    Article  CAS  PubMed  Google Scholar 

  • Solomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, VanderBeek BL, Wykoff CC, Gardner TW (2017) Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care 40:412–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Soria B, Roche E, Berná G, León-Quinto T, Reig JA, Martín F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49:157–162

    Article  CAS  PubMed  Google Scholar 

  • Spurway J, Logan P, Pak S (2012) The development, structure and blood flow within the umbilical cord with particular reference to the venous system. Australas J Ultrasound Med 15:97–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepanovic V, Awad O, Jiao C, Dunnwald M, Schatteman Gina C (2003) Leprdb diabetic mouse bone marrow cells inhibit skin wound vascularization but promote wound healing. Circ Res 92:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Fong CY, Biswas A, Bongso A (2015) Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One 10:e0127992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun TJ, Tao R, Han YQ, Xu G, Liu J, Han YF (2014) Therapeutic potential of umbilical cord mesenchymal stem cells with Wnt/beta-catenin signaling pathway pre-activated for the treatment of diabetic wounds. Eur Rev Med Pharmacol Sci 18:2460–2464

    PubMed  Google Scholar 

  • Sun X, Hao H, Han Q, Song X, Liu J, Dong L, Han W, Mu Y (2017) Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance by suppressing NLRP3 inflammasome-mediated inflammation in type 2 diabetes rats. Stem Cell Res Ther 8:241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, Wu P, Shi Y, Mao F, Yan Y, Xu W, Qian H (2018) Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 12:7613–7628

    Article  CAS  PubMed  Google Scholar 

  • Tahrani AA, Barnett AH, Bailey CJ (2016) Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol 12:566–592

    Article  CAS  PubMed  Google Scholar 

  • Tam K, Cheyyatraviendran S, Venugopal J, Biswas A, Choolani M, Ramakrishna S, Bongso A, Fong CY (2014) A nanoscaffold impregnated with human Wharton’s jelly stem cells or its secretions improves healing of wounds. J Cell Biochem 115:794–803

    Article  CAS  PubMed  Google Scholar 

  • Tavakoli M, Gogas Yavuz D, Tahrani AA, Selvarajah D, Bowling FL, Fadavi H (2017) Diabetic neuropathy: current status and future prospects. J Diabetes Res 2017:5825971

    Article  PubMed  PubMed Central  Google Scholar 

  • Tennen RI, Michishita-Kioi E, Chua KF (2012) Finding a target for resveratrol. Cell 148:387–389

    Article  CAS  PubMed  Google Scholar 

  • Thangavel J, Samanta S, Rajasingh S, Barani B, Xuan YT, Dawn B, Rajasingh J (2015) Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. J Cell Sci 128:3094–3105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Q, Duan L, Xu Z, Wang H, Wang X, Li Z, Zhang W, Zheng H (2013) Improved insulin secretion following intrapancreatic UCB transplantation in patients with T2DM. J Clin Endocrinol Metab 98:E1501-1504

    Article  CAS  PubMed  Google Scholar 

  • Tsiapalis D, O'Driscoll L (2020) Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells 16;9(4):991

  • Venkat P, Shen Y, Chopp M, Chen J (2018) Cell-based and pharmacological neurorestorative therapies for ischemic stroke. Neuropharmacol 134:310–322

    Article  CAS  Google Scholar 

  • Vincent JA, Mohr S (2007) Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 56:224–230

    Article  CAS  PubMed  Google Scholar 

  • Vinik AI, Maser RE, Mitchell BD, Freeman R (2003) Diabetic autonomic neuropathy. Diabetes Care 26:1553–1579

    Article  PubMed  Google Scholar 

  • Wang L, Amoozgar Z, Huang J, Saleh MH, Xing D, Orsulic S, Goldberg MS (2015) Decitabine enhances lymphocyte migration and function and synergizes with CTLA-4 blockade in a murine ovarian cancer model. Cancer Immunol Res 3:1030–1041

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Cui L, Snider BJ, Rivkin M, Yu SS, Lee CS, Adams LD, Gottlieb DI, Johnson EM Jr, Yu SP, Choi DW (2005) Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 19:183–193

    Article  CAS  PubMed  Google Scholar 

  • WenBo W, Fei Z, YiHeng D, Wei W, TingMang Y, WenHao Z, QianRu L, HaiTao L (2017) Human umbilical cord mesenchymal stem cells overexpressing nerve growth factor ameliorate diabetic cystopathy in rats. Neurochem Res 42:3537–3547

    Article  PubMed  CAS  Google Scholar 

  • Xian Y, Lin Y, Cao C, Li L, Wang J, Niu J, Guo Y, Sun Y, Wang Y, Wang W (2019) Protective effect of umbilical cord mesenchymal stem cells combined with resveratrol against renal podocyte damage in NOD mice. Diabetes Res Clin Pract 156:107755

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, Song Z, El-Gohary Y, Prasadan K, Shiota C, Gittes GK (2014) M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. PNAS USA 111:E1211-1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B, Wu YL (2009) Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 77:483–491

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Hao H, Tong C, Cheng Y, Liu J, Pang Y, Si Y, Guo Y, Zang L, Mu Y, Han W (2016) Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells 34:627–639

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Cheng Y, Hao H, Gao J, Yin Y, Yu S, Zou J, Liu J, Zhang Q, Mu Y (2020) Low-dose decitabine assists human umbilical cord-derived mesenchymal stem cells in protecting β cells via the modulation of the macrophage phenotype in type 2 diabetic mice. Stem Cells Int 2020:4689798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan J, Tie G, Wang S, Messina KE, DiDato S, Guo S, Messina LM (2012) Type 2 diabetes restricts multipotency of mesenchymal stem cells and impairs their capacity to augment postischemic neovascularization in db/db mice. J Am Heart Assoc 1:e002238

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan T, Venkat P, Chopp M, Zacharek A, Ning R, Cui Y, Roberts C, Kuzmin-Nichols N, Sanberg CD, Chen J (2015) Neurorestorative therapy of stroke in type 2 diabetes mellitus rats treated with human umbilical cord blood cells. Stroke 46:2599–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Hao H, Cheng Y, Gao J, Liu J, Xie Z, Zhang Q, Zang L, Han W, Mu Y (2018a) The homing of human umbilical cord-derived mesenchymal stem cells and the subsequent modulation of macrophage polarization in type 2 diabetic mice. Int Immunopharmacol 60:235–245

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Hao H, Cheng Y, Zang L, Liu J, Gao J, Xue J, Xie Z, Zhang Q, Han W, Mu Y (2018b) Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death Dis 9:760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • You HJ, Namgoong S, Han SK, Jeong SH, Dhong ES, Kim WK (2015) Wound-healing potential of human umbilical cord blood-derived mesenchymal stromal cells in vitro-a pilot study. Cytotherapy 17:1506–1513

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Yang K, Meng X, Cao B, Wang F (2020) Downregulation of long noncoding RNA MIAT in the retina of diabetic rats with tail-vein Injection of human umbilical-cord mesenchymal stem cells. Int J Med Sci 17:591–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SP, Wei Z, Wei L (2013) Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res 4:76–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Tang Z, He C, Tang W (2015) Diabetic cystopathy: a review. J. Diabetes 7:442–447

    Article  Google Scholar 

  • Yun YC, Jeong SG, Kim SH, Cho GW (2019) Reduced sirtuin 1/adenosine monophosphate-activated protein kinase in amyotrophic lateral sclerosis patient-derived mesenchymal stem cells can be restored by resveratrol. J Tissue Eng Regen Med 13:110–115

    CAS  PubMed  Google Scholar 

  • Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, Shi H, Wu L, Zhu W, Qian H, Xu W (2015) HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 33:2158–2168

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen M, Chen J, Lin S, Cai D, Chen C, Chen Z (2017a) Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci Rep 37:BSR20170036

  • Zhang R, Yin L, Zhang B, Shi H, Sun Y, Ji C, Chen J, Wu P, Zhang L, Xu W, Qian H (2018) Resveratrol improves human umbilical cord-derived mesenchymal stem cells repair for cisplatin-induced acute kidney injury. Cell Death Dis 9:965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Wang Y, Kong J, Dong M, Duan H, Chen S (2017b) Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci Rep 7:408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Mei H, Chang X, Chen F, Zhu Y, Han X (2016) Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR-155. J Mol Cell Biol 8:505–517

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Hu Q, Chen F, Zhang J, Guo J, Wang H, Gu J, Ma L, Ho G (2015) Human umbilical cord matrix-derived stem cells exert trophic effects on β-cell survival in diabetic rats and isolated islets. Dis Model Mech 8:1625–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Li X-X, Wang W, Hu J, Li P-L, Conley S, Li N (2016) Mesenchymal stem cell transplantation inhibited high salt-induced activation of the NLRP3 inflammasome in the renal medulla in Dahl S rats. Am J Physiol Renal Physiol 310:F621–F627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated in bibliography compilation, drafting of the manuscript, and revising it critically. AG conceived the concept and the design of the manuscript. RC gave the final approval for the version to be submitted.

Corresponding author

Correspondence to Andreia Gomes.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All the authors have read and approved the final manuscript.

Conflict of interest

Author AG is an employee of “Bebé Vida - Ciências Para A Vida, S.A,” a Portuguese cord blood banking company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, A., Coelho, P., Soares, R. et al. Human umbilical cord mesenchymal stem cells in type 2 diabetes mellitus: the emerging therapeutic approach. Cell Tissue Res 385, 497–518 (2021). https://doi.org/10.1007/s00441-021-03461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03461-4

Keywords

Navigation