Skip to main content

Advertisement

Log in

Effect of combined therapy of human Wharton’s jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus is the most common endocrine disease all over the world, while existing therapies can only ameliorate hyperglycemia or temporarily improve the response to insulin in target tissues, they cannot retard or improve the progressive β-cell dysfunction persistently. Combined therapy of stem cells and sitagliptin might resolve this problem, we verified this hypothesis in a diabetic rat model. Except ten Wistar rats in normal control group, diabetic rats were divided into diabetic control group, WJ-MSCs group, sitagliptin group and WJ-MSCs + sitagliptin group and received homologous therapy. Ten weeks after therapy, diabetic symptoms, FPG and GHbA1c in WJ-MSCs group, sitagliptin group and WJ-MSCs + sitagliptin group were significantly less than those in diabetic control group (P < 0.05), while fasting C-peptide and number of β cells in WJ-MSCs group and WJ-MSCs + sitagliptin group was significantly higher than those in diabetic control and sitagliptin group (P < 0.01). Glucagon and number of α cells in sitagliptin group and WJ-MSCs + sitagliptin group were significantly lower than those in WJ-MSCs group and diabetic control group (P < 0.01). No symptoms of rejection and toxic effect were observed. Combined therapy of WJ-MSCs and sitagliptin can effectively ameliorate hyperglycemia, promote regeneration of islet β cells and suppress generation of islet α cells in diabetic rats, presenting a new therapy for type 2 diabetes although the exact mechanisms are unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. King, R.E. Aubert, W.H. Herman, Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21, 1414–1431 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. E.A. Nyenwe, T.W. Jerkins, G.E. Umpierrez, A.E. Kitabchi, Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. Metabolism 60, 1–23 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. V. Volarevic, N. Arsenijevic, M.L. Lukic, M. Stojkovic, Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29, 5–10 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. H.K. Salem, C. Thiemermann, Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28, 585–596 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  5. F.E. Ezquer, M.E. Ezquer, D.B. Parrau, D. Carpio, A.J. Yañez, P.A. Conget, Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol. Blood. Marrow. Transplant. 14, 631–640 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. R. Jiang, Z. Han, G. Zhuo, X. Qu, X. Li, X. Wang, Y. Shao, S. Yang, Z.C. Han, Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Fr. Med. 5, 94–100 (2011)

    Article  Google Scholar 

  7. R. Abdi, P. Fiorina, C.N. Adra, M. Atkinson, M.H. Sayegh, Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57, 1759–1767 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Y.L. Si, Y.L. Zhao, H.J. Hao, X.B. Fu, W.D. Han, MSCs: biological characteristics, clinical applications and their outstanding concerns. Ageing. Res. Rev. 10, 93–103 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. R. Anzalone, M. Lo Iacono, T. Loria, A. Di Stefano, P. Giannuzzi, F. Farina, G. La Rocca, Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem. Cell. Rev. 7, 342–363 (2011)

    Article  PubMed  Google Scholar 

  10. J.S. Nachnani, D.G. Bulchandani, A. Nookala, B. Herndon, A. Molteni, P. Pandya, R. Taylor, T. Quinn, L. Weide, L.M. Alba, Biochemical and histological effects of exendin-4 (exenatide) on the rat pancreas. Diabetologia 53, 153–159 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. M. Monami, I. Iacomelli, N. Marchionni, E. Mannucci, Dipeptydil peptidase-4 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Nutr. Metab. Cardiovasc. Dis. 20, 224–235 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. A.V. Matveyenko, S. Dry, H.I. Cox, A. Moshtaghian, T. Gurlo, R. Galasso, A.E. Butler, P.C. Butler, Beneficial endocrine but adverse exocrine effects of sitagliptin in the human islet amyloid polypeptide transgenic rat model of type 2 diabetes: interactions with metformin. Diabetes 58, 1604–1615 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Moritoh, K. Takeuchi, T. Asakawa, O. Kataoka, H. Odaka, The dipeptidyl peptidase-4 inhibitor alogliptin in combination with pioglitazone improves glycemic control, lipid profiles, and increases pancreatic insulin content in ob/ob mice. Eur. J. Pharmacol. 14, 448–454 (2009)

    Article  Google Scholar 

  14. M.J. Reed, K. Meszaros, L.J. Entes, M.D. Claypool, J.G. Pinkett, T.M. Gadbois, G.M. Reaven, A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49, 1390–1394 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. M. Sioud, New insights into mesenchymal stromal cell-mediated T-cell suppression through galectins. Scand. J. Immunol. 73, 79–84 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004)

    Article  PubMed  Google Scholar 

  17. H. Yang, X. Jin, C.W. Kei Lam, S.K. Yan, Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med. 49, 1773–1782 (2011)

    CAS  PubMed  Google Scholar 

  18. V.M. Victor, M. Rocha, R. Herance, A. Hernandez-Mijares, Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr. Pharm. Des. 17, 3947–3958 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. P. Jin, X. Zhang, Y. Wu, L. Li, Q. Yin, L. Zheng, H. Zhang, C. Sun, Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation. Transpl. Proc. 42, 2745–2752 (2010)

    Article  CAS  Google Scholar 

  20. F. Ezquer, M. Ezquer, V. Simon, P. Conget, The antidiabetic effect of MSCs is not impaired by insulin prophylaxis and is not improved by a second dose of cells. PLoS ONE 6, e16566 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. G.I. Bell, H.C. Broughton, K.D. Levac, D.A. Allan, A. Xenocostas, D.A. Hess, Transplanted human bone marrow progenitor subtypes stimulate endogenous islet regeneration and revascularization. Stem. Cells. Dev. 21, 97–109 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. J.H. Ho, T.C. Tseng, W.H. Ma, W.K. Ong, Y.F. Chen, M.H. Chen, M.W. Lin, C.Y. Hong, O.K. Lee, Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and β-cell differentiation in streptozocin-induced diabetic mice. Cell Transpl. 21, 997–1009 (2012)

    Article  Google Scholar 

  23. J.W. Lee, X. Fang, A. Krasnodembskaya, J.P. Howard, M.A. Matthay, Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 29, 913–919 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. R. Hass, A. Otte, Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell. Commun. Signal. 10, 26 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. L. Wang, Y. Zhao, S. Shi, Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration. J. Dent. Res. 91, 1003–1010 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. P.J. Tsai, H.S. Wang, Y.M. Shyr, Z.C. Weng, L.C. Tai, J.F. Shyu, T.H. Chen, Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats. J. Biomed. Sci. 19, 47 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. E.J. Verspohl, Novel therapeutics for type 2 diabetes: incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors. Pharmacol. Ther. 124, 113–138 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. T. Kitamoto, M. Takemoto, M. Fujimoto, T. Ishikawa, S. Onishi, E. Okabe, R. Ishibashi, K. Kobayashi, H. Kawamura, K. Yokote, Sitagliptin successfully ameliorates glycemic control in werner syndrome with diabetes. Diabetes Care 35, e83 (2012)

    Article  PubMed  Google Scholar 

  29. J.E. Stevens, M. Horowitz, C.F. Deacon, M. Nauck, C.K. Rayner, K.L. Jones, The effects of sitagliptin on gastric emptying in healthy humans—a randomised, controlled study. Aliment. Pharmacol. Ther. 36, 379–390 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. S.G. Chrysant, G.S. Chrysant, Clinical implications of cardiovascular preventing pleiotropic effects of dipeptidyl peptidase-4 inhibitors. Am. J. Cardiol. 109, 1681–1685 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. B. Hocher, C. Reichetzeder, M.L. Alter, Renal and cardiac effects of DPP-4 Inhibitors—from preclinical development to clinical research. Kidney. Blood. Press. Res. 36, 65–84 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Y.T. Chiang, W. Ip, T. Jin, The role of the Wnt signaling pathway in incretin hormone production and function. Front. Physiol. 3, 273 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  33. Y. Yamada, Diabetes mellitus and osteoporosis. Incretin as a coordinator of glucose and bone metabolism. Clin. Calcium. 22, 1353–1358 (2012)

    CAS  PubMed  Google Scholar 

  34. S. Cernea, The role of incretin therapy at different stages of diabetes. Rev. Diabet. Stud. 8, 323–338 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate all work done by Jiangsu Yu in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of the country in which they were performed. This study was approved by the Institutional Animal Ethical Committee, Qingdao and Ethics Committee of the Affiliated Hospital of Medical College, Qingdao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangang Wang.

Additional information

Jianxia Hu and Fang Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Wang, F., Sun, R. et al. Effect of combined therapy of human Wharton’s jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats. Endocrine 45, 279–287 (2014). https://doi.org/10.1007/s12020-013-9984-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9984-0

Keywords

Navigation