Skip to main content
Log in

Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In the present work, we have investigate the cellular immune response of Galleria mellonella larvae against three strains of the gram-negative bacterium Actinobacillus pleuropneumoniae: low-virulence (780), high-virulence (1022) and the serotype 8 reference strain (R8). Prohemocytes, plasmatocytes, granulocytes, oenocytoids and spherulocytes were distinguished according to their size and morphology, their molecular markers and dye-staining properties and their role in the immune response. Total hemocyte count, differential hemocyte count, lysosome activity, autophagic response, cell viability and caspase-3 activation were determined in circulating hemocytes of naive and infected larvae. The presence of the autophagosome protein LC3 A/B within the circulating hemocytes of G. mellonella was dependent on and related to the infecting A. pleuropneumoniae strain and duration of infection. Hemocytes treated with the high-virulence strain expressed higher levels of LC3 A/B, whereas treatment with the low-virulence strain induced lower expression levels of this protein in the cells. Moreover, our results showed that apoptosis in circulating hemocytes of G. mellonella larvae after exposure to virulent bacterial strains occurred simultaneously with excessive cell death response induced by stress and subsequent caspase-3 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashhurst DE, Richards G (1964) Some histochemical observations on the blood cells of the wax moth, Galleria mellonella. J Morphol 114:247–253

    Article  CAS  PubMed  Google Scholar 

  • Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, Kim M, Sasakawa C (2011) Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 195:931–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baggio MP, Ribeiro LF, Vessaro-Silva SA, Brancalhão RM (2014) Bombyx mori pylorus infection by Alphabaculovirus. Genet Mol Res 13:6332–6339

    Article  CAS  PubMed  Google Scholar 

  • Behar SM, Divangahi M, Remold HG (2010) Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 8:668–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellocchio S, Moretti S, Perruccio K, Fallarino F, Bozza S, Montagnoli C, Mosci P, Lipford GB, Pitzurra L, Romani L (2004) TLRs govern neutrophil activity in aspergillosis. J Immunol 173:7406–7415

    Article  CAS  PubMed  Google Scholar 

  • Bergin D, Reeves EP, Renwick J, Wientjes FB, Kavanagh K (2005) Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73:4161–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borr JD, Ryan DA, Macinnes JI (1991) Analysis of Actinobacillus pleuropneumoniae and related organisms by DNA-DNA hybridization and restriction endonuclease fingerprinting. Int J Syst Bacteriol 41:121–129

    Article  CAS  PubMed  Google Scholar 

  • Brayner FA, Araújo HR, Santos SS, Cavalcanti MG, Alves LC, Souza JR, Peixoto CA (2007) Hemocyte population and ultrastructural changes during the immune response of Culex quinquefasciatus to microfilariae of Wuchereria bancrofti. Med Vet Entomol 21:112–120

    Article  CAS  PubMed  Google Scholar 

  • Browne N, Heelan M, Kavanagh K (2013) An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4:597–603

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F (2010) Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res 41:65–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Christen JM, Campbell JF, Lewis EE, Shapiro-Ilan DI, Ramaswamy SB (2007) Responses of the entomopathogenic nematode, Steinernema riobrave to its insect hosts, Galleria mellonella and Tenebrio molitor. Parasitology 134:889–898

    Article  CAS  PubMed  Google Scholar 

  • Ciesielczuk H, Betts J, Phee L, Doumith M, Hope R, Woodford N, Wareham DW (2015) Comparative virulence of urinary and bloodstream isolates of extra-intestinal pathogenic Escherichia coli in a Galleria mellonella model. Virulence 6:145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo MI (2007) Autophagy: a pathogen driven process. IUBMB Life 59:238–242

    Article  CAS  PubMed  Google Scholar 

  • Cotter G, Doyle S, Kavanagh K (2000) Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27:163–169

    Article  CAS  PubMed  Google Scholar 

  • Desbois AP, Coote PJ (2011) Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother 66:1785–1790

    Article  CAS  PubMed  Google Scholar 

  • Desbois AP, Coote PJ (2012) Utility of greater wax moth larva (Galleria mellonella) for evaluating the toxicity and efficacy of new antimicrobial agents. Adv Appl Microbiol 78:25–53

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  • Feitosa AP, Alves LC, Chaves MM, Veras DL, Silva EM, Aliança AS, França IR, Gonçalves GG, Lima-Filho JL, Brayner FA (2015) Hemocytes of Rhipicephalus sanguineus (Acari: Ixodidae): characterization, population abundance, and ultrastructural changes following challenge with Leishmania infantum. J Med Entomol 52:1193–1202

    Article  CAS  PubMed  Google Scholar 

  • Frey J (2011) The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae. Vet Microbiol 153:51–58

    Article  CAS  PubMed  Google Scholar 

  • Fuchs BB, O’Brien E, Khoury JB, Mylonakis E (2010) Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence 1:475–482

    Article  PubMed  Google Scholar 

  • Gardiner EMM, Strand MR (2000) Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Arch Insect Biochem Physiol 43:147–164

    Article  CAS  PubMed  Google Scholar 

  • Hillyer JF (2016) Insect immunology and hematopoiesis. Dev Comp Immunol 58:102–118

    Article  CAS  PubMed  Google Scholar 

  • Hillyer JF, Strand MR (2014) Mosquito hemocyte-mediated immune responses. Curr Opin Insect Sci 3:14–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann JA (1995) Innate immunity of insects. Curr Opin Immunol 7:4–10

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Fakruddin MD (2012) Mechanism of host cell death in response to bacterial infections. J Clin Cell Immunol 3:128

    Article  Google Scholar 

  • Hultmark D (1993) Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet 9:178–183

    Article  CAS  PubMed  Google Scholar 

  • Hwang S, Bang K, Lee J, Cho S (2015) Circulating hemocytes from larvae of the Japanese rhinoceros beetle Allomyrina dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) and the cellular immune response to microorganisms. PLoS One 10:e0128519

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JC (1962) Current concepts concerning insect hemocytes. Am Zool 2:209–246

    Article  Google Scholar 

  • Junqueira JC (2012) Galleria mellonella as a model host for human pathogens: recent studies and new perspectives. Virulence 3:474–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavanagh K, Fallon JP (2010) Galleria mellonella larvae as models for studying fungal virulence. Fungal Biol Rev 24:79–83

    Article  Google Scholar 

  • Kavanagh K, Reeves EP (2004) Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev 28:101–112

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh K, Reeves EP (2007) Insect and mammalian innate immune responses are much alike. Microbe 2:596–599

    Google Scholar 

  • Klein J (1997) Homology between immune responses in vertebrates and invertebrates: does it exist? Scand J Immunol 46:558–564

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon H, Bang K, Cho S (2014) Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. PLoS One 9:e103620

    Article  PubMed  PubMed Central  Google Scholar 

  • Labreuche Y, Soudant P, Gonçalves M, Lambert C, Nicolas JL (2006) Effects of extracellular products from the pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas. Dev Comp Immunol 30:367–379

    Article  CAS  PubMed  Google Scholar 

  • Lackie AM (1988) Immune mechanisms in insects. Parasitology 4:98–105

    CAS  Google Scholar 

  • Lanot R, Zachary D, Holder F, Meister M (2001) Postembryonic hematopoiesis in Drosophila. Dev Biol 230:243–257

    Article  CAS  PubMed  Google Scholar 

  • Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewenza S, Charron-Mazenod L, Giroux L, Zamponi AD (2014) Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence. PeerJ 2:e521

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Xian JA, Guo H, Wang AL, Miao YT, Ye JM, Ye CX, Lia S (2014) Effect of temperature decrease on hemocyte apoptosis of the white shrimp Litopenaeus vannamei. Aquac Int 22:761–774

    Article  Google Scholar 

  • Ling E, Shirai K, Kanekatsu R, Kiguchi K (2003) Classification of larval circulating hemocytes of the silkworm, Bombyx mori, by acridine orange and propidium iodide staining. Histochem Cell Biol 120:505–511

    Article  CAS  PubMed  Google Scholar 

  • Lionakis MS (2011) Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology. Virulence 2:521–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipscomb MF, Hutt J, Lovchik J, Wu T, Lyons CR (2010) The pathogenesis of acute pulmonary viral and bacterial infections: investigations in animal models. Annu Rev Pathol 5:223–252

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Galluzzi L, Zitvogel L, Kroemer G (2013) Autophagy and cellular immune responses. Immunity 39:211–227

    Article  CAS  PubMed  Google Scholar 

  • Manachini B, Arizza V, Parrinello D, Parrinello N (2011) Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. J Invertebr Pathol 106:360–365

    Article  PubMed  Google Scholar 

  • Matha V, Mraeck Z (1984) Changes in haemocyte counts in Galleria mellonella (Lepidoptera: Galleriidae) larvae infected with Steinernema Sp. (Nematoda: Steinernematidae). Nematologica 30:86–89

    Article  Google Scholar 

  • McMillan S, Verner-Jeffreys D, Weeks J, Austin B, Desbois AP (2015) Larva of the greater wax moth, Galleria mellonella, is a suitable alternative host for studying virulence of fish pathogenic Vibrio anguillarum. BMC Microbiol 15:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Mihalache CC, Simon HU (2012) Autophagy regulation in microphage and neutrophils. Exp Cell Res 318:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Morton DB, Dunphy GB, Chadwick JS (1987) Reactions of haemocytes of immune and non-immune Galleria mellonella larvae to Proteus mirabilis. Dev Comp Immunol 11:47–55

    Article  CAS  PubMed  Google Scholar 

  • Mowlds P, Kavanagh K (2008) Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 165:5–12

    Article  PubMed  Google Scholar 

  • Nathan S (2014) New to Galleria mellonella: modeling an ExPEC infection. Virulence 5:371–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Oczypok EA, Oury TD, Chu CT (2013) It’s a cell-eat-cell world, autophagy and phagocytosis. Am J Pathol 182:612–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira MF, Rossi CC, de Carvalho FM, de Almeida LG, Souza RC, de Vasconcelos AT, Bazzolli DM (2015a) Draft genome sequences of six Actinobacillus pleuropneumoniae serotype 8 Brazilian clinical isolates: insight into new applications. Genome Announc 5:3

    Google Scholar 

  • Pereira MF, Rossi CC, de Queiroz MV, Martins GF, Isaac C, Bossé JT, Li Y, Wren BW, Terra VS, Cuccui J, Langford PR, Bazzolli DM (2015b) Galleria mellonella is an effective model to study Actinobacillus pleuropneumoniae infection. Microbiology 161:387–400

    Article  CAS  PubMed  Google Scholar 

  • Ramarao N, Nielsen-Leroux C, Lereclus D (2012) The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp 70:e4392

    Google Scholar 

  • Ratcliffe NA (1985) Invertebrate immunity—a primer for the non-specialist. Immunol Let 10:253–270

    Article  CAS  Google Scholar 

  • Romanelli D, Casati B, Franzetti E, Tettamanti G (2014) A molecular view of autophagy in Lepidoptera. Biomed Res Int 2014:902315

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi CC, Vicente AM, Guimarães WV, Araújo EF, Queiroz MV, Bazzolli DMS (2013) Face to face with Actinobacillus pleuropneumoniae: landscape of the distribution of clinical isolates in Brazil. Afr J Microbiol Res 7:2916–2924

    Article  Google Scholar 

  • Rowan R, Moran C, McCann M, Kavanagh K (2009) Use of Galleria mellonella larvae to evaluate the in vivo antifungal activity of [Ag2 (mal)(phen)3]. Biometals 22:461–467

    Article  CAS  PubMed  Google Scholar 

  • Sharma PR, Sharma OP, Saxena BP (2008) Effect of sweet flag rhizome oil (Acorus calamus) on hemogram and ultrastructure of hemocytes of the tobacco armyworm, Spodoptera litura (Lepidoptera: Noctuidae). Micron 39:544–555

    Article  CAS  PubMed  Google Scholar 

  • Shi YG (2004) Caspase activation: revisiting the induced proximity model. Cell 117:855–858

    Article  CAS  PubMed  Google Scholar 

  • Strand MR (2008) The insect cellular immune response. Insect Sci 15:1–14

    Article  CAS  Google Scholar 

  • Thomaz L, García-Rodas R, Guimarães AJ, Taborda CP, Zaragoza O, Nosanchuk JD (2013) Galleria mellonella as a model host to study Paracoccidioides lutzii and Histoplasma capsulatum. Virulence 4:139–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Tojo S, Naganuma F, Arakawa K, Yokoo S (2000) Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol 46:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Tsai CJ, Loh JM, Proft T (2016) Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 5:1–16

    CAS  Google Scholar 

  • Vilmos P, Kurucz E (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol Lett 62:59–66

    Article  CAS  PubMed  Google Scholar 

  • Vlisidou I, Dowling AJ, Evans IR, Waterfield N, Ffrench-Constant RH, Wood W (2009) Drosophila embryos as model systems for monitoring bacterial infection in real time. PLoS Pathog 5:e1000518

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojda I, Jakubowicz T (2007) Humoral immune response upon mild heat-shock conditions in Galleria mellonella larvae. J Insect Physiol 53:1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Xu HS, Lyu SJ, Xu JH, Lu BJ, Zhao J, Li S, Li YQ, Chen YY (2015) Effect of lipopolysaccharide on the hemocyte apoptosis of Eriocheir sinensis. J Zhejiang Univ Sci B 16:971–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita M, Iwabuchi K (2001) Bombyx mori Prohemocyte division and differentiation in individual microcultures. J Insect Physiol 47:325–331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Financiadora de Estudos e Projetos (Finep), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES/PVE 88881.030429/2013-01; PROEX], and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). The authors are grateful to Núcleo de Microscopia e Microanálise (NMM) and the Laboratório de Sistemática Molecular (DBA/UFV) for their technical assistance and support in all analyses involving microscopy and cytometry. They also thank J.L. Arteaga Blanco for his technical support in obtaining hemocyte images, and Dr. J.E. Serrão for kindly providing the primary antibodies used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Ferreira Martins.

Electronic supplementary material

Fig. S1

(DOCX 136 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arteaga Blanco, L.A., Crispim, J.S., Fernandes, K.M. et al. Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae . Cell Tissue Res 370, 153–168 (2017). https://doi.org/10.1007/s00441-017-2653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2653-5

Keywords

Navigation