Skip to main content
Log in

The digestive system of the stony coral Stylophora pistillata

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Because hermatypic species use symbiotic algal photosynthesis, most of the literature in this field focuses on this autotrophic mode and very little research has studied the morphology of the coral’s digestive system or the digestion process of particulate food. Using histology and histochemestry, our research reveals that Stylophora pistillata’s digestive system is concentrated at the corals’ peristome, actinopharynx and mesenterial filaments (MF). We used in-situ hybridization (ISH) of the RNA transcript of the gene that codes for the S. pistillata digestive enzyme, chymotrypsinogen, to shed light on the functionality of the digestive system. Both the histochemistry and the ISH pointed to the MF being specialized digestive organs, equipped with large numbers of acidophilic and basophilic granular gland cells, as well as acidophilic non-granular gland cells, some of which produce chymotrypsinogen. We identified two types of MF: short, trilobed MF and unilobed, long and convoluted MF. Each S. pistillata polyp harbors two long convoluted MF and 10 short MF. While the short MF have neither secreting nor stinging cells, each of the convoluted MF display gradual cytological changes along their longitudinal axis, alternating between stinging and secreting cells and three distinctive types of secretory cells. These observations indicate the important digestive role of the long convoluted MF. They also indicate the existence of novel feeding compartments in the gastric cavity of the polyp, primarily in the nutritionally active peristome, in the actinopharynx and in three regions of the MF that differ from each other in their cellular components, general morphology and chymotrypsinogen excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe N (1938) Feeding behavior and the nematocyst of Fungia and 15 other species of corals. Palao Trop Biol Sta Stud 1:469–521

    Google Scholar 

  • Agostini S, Suzuki Y, Higuchi T, Casareto BE, Yoshinaga K, Nakano Y, Fujimura H (2012) Biological and chemical characteristics of the coral gastric cavity. Coral Reefs 31:147–156

    Article  Google Scholar 

  • Bancroft JD, Stevens A (1990) Theory and histological techniques, 3rd edn. Churchill Livingstone, Edinburgh, pp 191–196

    Google Scholar 

  • Beutler R (1924) Experimentelle Untersuchungenüber die Verdauugbei hydra. J Comp Physiol A 1:1–56

    Google Scholar 

  • Bhattacharya D, Agrawal S, Aranda M, Baumgarten S, Belcaid M, Drake JL, Erwin D, Foret S, Gates RD, Gruber DF, Bishoy Kamel B, Lesser MP, Levy O, Liew YJ, MacManes M, Mass T, Medina M, Mehr S, Meyer E, Price DC, Putnam HM, Qiu H, Shinzato C, Shoguchi E, Stokes AJ, Tambutté S, Tchernov D, Voolstra CR, Wagner N, Walker CW, Weber APM, Weis V, Zelzion E, Zoccola D, Falkowski PG (2016) Comparative genomics explains the evolutionary success of reef-forming corals. eLife 5:e13288

    PubMed  PubMed Central  Google Scholar 

  • Boschma H (1925) On the feeding reactions and digestion in the coral polyp Astrangia danae with notes on its symbiosis with zooxanthellae. Biol Bull 49:407–439

    Article  CAS  Google Scholar 

  • Breitschopf H, Suchanek G, Gould RM, Colman DR, Lassmann H (1992) In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathol 84:581–587

    Article  CAS  PubMed  Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates, vol 2. Sinauer Associates, Sunderland, pp 244–246

    Google Scholar 

  • Bumann D (1995) Localization of digestion activities in the sea anemone Haliplanella luciae. Biol Bull 189:236–237

    Article  CAS  PubMed  Google Scholar 

  • Carpenter FW (1910) Feeding reactions of the rose coral (Isophyllia). Proc Am Acad Arts Sci 46:149–162

    Article  Google Scholar 

  • Chadwick NE (1987) Interspecific aggressive behavior of the corallimorpharian Corynactis californica (Cnidaria: Anthozoa): Effects on sympatric corals and sea anemones. Biol Bull 173:110–125

    Article  Google Scholar 

  • Chornesky EA (1989) Repeated reversals during spatial competition between corals. Ecology 70:843–855

    Article  Google Scholar 

  • Coan MH, Travis J (1970) Comparative biochemistry of proteases from a coelenterate. Comp Biochem Physiol 32:127–139

    Article  CAS  PubMed  Google Scholar 

  • Daly M, Fautin DG, Cappola VA (2003) Systematics of the hexacorallia (Cnidaria: Anthozoa). Zool J Linnean Soc 139:419–437

    Article  Google Scholar 

  • Duerden JE (1902) West Indian madreporarian polyps. Mem Nat Acad Sci 8:401–597

    Google Scholar 

  • Dunn DF (1982) Cnidaria. In: Parker P (ed) Synopsis and classification of living organisms, vol 1. McGraw-Hill, New York, pp 669–706

    Google Scholar 

  • Fautin DG, Mariscal RN (1991) Cnidaria: Anthozoa. Microsc Anat Invertebr 2:267–358

    Google Scholar 

  • Galloway SB, Work TM, Bochsler VS, Harley RA, Kramarsky-Winters E, McLaughlin SM, Meteyer CU, Morado JF, Nicholson JH, Parnell PG, Peters EC, Reynolds TL, Rotstein DS, Sileo L, Woodley CM (2007) Coral disease and health workshop: coral histopathology II. NOAA technical memorandum NOS NCCOS56 and NOAA technical memorandum CRCP 4. National Oceanic and Atmospheric Administration, Silver Spring, MD, p 84

    Google Scholar 

  • Gibson D, Dixson GH (1969) Chymotrypsin-like proteases from the sea anemone Metridium senile. Nature 222:753–756

    Article  CAS  PubMed  Google Scholar 

  • Goldberg WM (2002a) Gastrodermal structure and feeding responses in the scleractinian Mycetophyllia reesi, a coral with novel digestive filaments. Tissue Cell 34:246–261

    Article  PubMed  Google Scholar 

  • Goldberg WM (2002b) Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell 34:232–245

    Article  PubMed  Google Scholar 

  • Goreau TF (1956) A study of the biology and histochemistry of corals. PhD dissertation, Yale University, New Haven

  • Goreau TF, Goreau NI, Yonge CM (1971) Reef corals: autotrophs or heterotrophs? Biol Bull 141:247–260

    Article  Google Scholar 

  • Greenwood M (1888) On digestion in Hydra, with some observations on the structure of the endoderm. J Physiol 9:317–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grottoli AG (2002) Effect of light and brine shrimp on skeletal δ13C in the Hawaiian coral Porites compressa: a tank experiment. Geochim Cosmochim Acta 66:1955–1967

    Article  CAS  Google Scholar 

  • Houlbrèque F, Ferrier-Pagés SC (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Tambutté E, Allemand D, Ferrier-Pagés SC (2004a) Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol 207:1461–1469

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Tambutté E, Allemand D, Ferrier-Pagés SC (2004b) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160

    Article  Google Scholar 

  • Hyman LH (1940) The invertebrates: protozoa through Ctenophora, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Jickeli CF (1883) Der Bau der Hydroidpolypen. Morph Jb 8:373–416, 580–680, pls 16–18, 25–28

  • Krijgsman BJ, Talbot FH (1953) Experiments on digestion in sea anemones. Arch Int Physiol 61:277–291

    CAS  PubMed  Google Scholar 

  • Krukenberg CFW (1880) Uber den Verdauungsmodus der Aktinien. Vergl Physiol Bd 1:33–56

    Google Scholar 

  • Lang J (1973) Coral reef project—papers in memory of Dr. Thomas F. Goreau. 11. Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift. Bull Mar Sci 23:260–279

    Google Scholar 

  • Lang JC, Chornesky EA (1990) Competition between scleractinian reef corals – a review of mechanisms and effects. Ecosyst World 25:209–252

    Google Scholar 

  • Logan A (1984) Interspecific aggression in hermatypic corals from Bermuda. Coral Reefs 3:131–138

    Article  Google Scholar 

  • Matthai G (1918) On reactions to stimuli in corals. Proc Camb Philos Soc 19:164–166

    Google Scholar 

  • Metschnikoff E (1880) Über die intracelluläre Verdauungbei Coelenteraten. Zool Anz 3:261–263

    Google Scholar 

  • Muhlia-Almazán A, Sánchez-Paz A, García-Carreño FL (2008) Invertebrate trypsins: a review. J Comp Physiol B 178:655–672

    Article  PubMed  Google Scholar 

  • Muscatine L (1973) Nutrition of corals. Biol Geol Coral Reefs 2:77–115

    Article  Google Scholar 

  • Nauman MS, Orejas C, Wild C, Ferrier-Pagés C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576

    Article  Google Scholar 

  • Nicol JA (1959) Digestion in sea anemones. J Mar Biol Assoc UK 38:469–476

    Article  Google Scholar 

  • Okubo N, Motokawa T (2007) Embryogenesis in the reef-building coral Acropora spp. Zool Sci 24:1169–1177

    Article  PubMed  Google Scholar 

  • Östman C (2000) A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts. Sci Mar 64:31–46

    Article  Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamian corals. Mar Ecol Prog Ser 300:79–89

    Article  Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. J Exp Mar Biol Ecol 331:99–107

    Article  Google Scholar 

  • Rinkevich B (2004) Allorecognition and xenorecognition in reef corals: adecade of interactions. In: Fautin DG, Westfall JA, Cartwright P, Daly M, Wyttenbach CR (eds) Coelenterate biology. Springer, Dordrecht, pp 443–450

  • Rinkevich B, Loya Y (1979) The reproduction of theRed Sea coral Stylophora pistillata. 11. Synchronization inbreeding and seasonality of planulae shedding. Mar EcolProg Ser 1:145–152

  • Rinkevich B, Loya Y (1983) Intraspecific competitive networks in the red sea coral Stylophora pistillata. Coral Reefs 1:161–172

    Article  Google Scholar 

  • Schlesinger A, Zlotkin E, Kramarsky-Winter E, Loya Y (2009) Cnidarian internal stinging mechanism. Proc R Soc Lond B 276:1063–1067

    Article  CAS  Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317

    Article  Google Scholar 

  • Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211:1–28

    Article  Google Scholar 

  • Shick JM (1991) Functional biology of sea anemones. Chapman and Hall, London, p 395

    Book  Google Scholar 

  • Stevens CE, Hume ID (2004) Comparative physiology of the vertebrate digestive system, 2nd edn. Cambridge University Press, Cambridge

  • Tiffon Y, Bouillon J (1975) Digestion extracellulaire dans la cavité gastrique de Cerianthus lloydi Gosse. Structure du gastroderme, localisation et propriétés des enzymes protéolytiques. J Exp Mar Biol Ecol 18:255–269

    Article  CAS  Google Scholar 

  • Trench RK (1974) Nutritional potentials in Zoanthus sociathus (Coelenterata, Anthozoa). Helgoländer Meeresun 26:174–216

    Article  Google Scholar 

  • Van Praët M (1978) Étude histochimique et ultrastructurale des zones digestives d’Actinia equine L. (Cnidaria, Actiniaria) = Histochemical and ultrastructural study of the digestive parts of Actinia equinia. Cah Biol Mar 4

  • Van Praët M (1980) Absorption of substances dissolved in the environment, particles and products of extracellular digestion in Actinia equine L. (Cnidaria, Actiniaria). Reprod Nutr Dev 20:1393–1399

    Article  PubMed  Google Scholar 

  • Van Praët M (1982) Amylase trypsin and chymotrypsin-like proteases from Actinia equina L. their role in the nutrition of this sea anemone. Comp Biochem Physiol 3:523–528

    Article  Google Scholar 

  • Van Praët M (1985) Nutrition of sea anemones. Adv Mar Biol 22:65–99

    Article  Google Scholar 

  • Wellington GM (1980) Reversal of digestive interactions between pacific reef corals: mediation by sweeper tentacles. Oecologia 47:340–343

    Article  PubMed  Google Scholar 

  • Wellington GR (1982) An experimental analysis of the effects of light and zooplankton on coral zonation. Oecologia 52:311–320

    Article  PubMed  Google Scholar 

  • Wijgerde T, Diantari R, Lewaru MW, Verreth JAJ, Osinga R (2011) Extracoelenteric zooplankton feeding is a key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis. J Exp Biol 214:3351–3357

    Article  CAS  PubMed  Google Scholar 

  • Wilson HV (1888) On the development of Manicina areolata. J Morph 2:191–252

    Article  Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders College, Fort Worth

    Google Scholar 

  • Yonge CM (1930) Studies on the physiology of corals. I. Feeding mechanisms and food. Sci Rep Great Barrier Reef Exped 1:13–57

    Google Scholar 

  • Yonge CM (1973) Coral reef project—papers in memory of Dr. Thomas F Goreau. 1. The nature of reef-building (Hermatypic) corals. Bull Mar Sci 23:1–15

    Google Scholar 

  • Young B (ed) (2006) Wheater’s functional histology: a text and color atlas (5th edn). Elsevier, New York

Download references

Acknowledgements

We are grateful to the Hillel Yaffe Hospital Medical School for letting us use their digital photography equipment and to Z. Lapidot, M. Oren and T. Rozentsvig for their assistance during the different stages of the research. We thank G. Paz for his help with the graphic work in this paper. This research was supported by the EC INCO-DEV project (REEFRES-510657) and by the AID-MERC program (no. M33-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Raz-Bahat or B. Rinkevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raz-Bahat, M., Douek, J., Moiseeva, E. et al. The digestive system of the stony coral Stylophora pistillata . Cell Tissue Res 368, 311–323 (2017). https://doi.org/10.1007/s00441-016-2555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2555-y

Keywords

Navigation