Skip to main content
Log in

Ultrastructure of the extracorporeal tube and “cement glands” in the sessile rotifer Limnias melicerta (Rotifera: Gnesiotrocha)

  • Original paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Rotifers are common aquatic microscopic invertebrates. Most rotifers are planktonic but several gnesiotrochan species are sessile and produce tubular sheaths around their bodies. These tubes have a variable morphology and may be produced by different glands. Here, we applied scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to study the ultrastructure of the tube and its potential origin of secretion in Limnias melicerta. Results from SEM confirm earlier observations that juvenile rotifers first secrete a segment-less tube and then add segments as they grow. Tubes consist of two distinct secretions: an inner mucus-like layer that extends from the base to the foot region of the adult, and an external layer that is secreted by “cement cells” sensu Wright. The external layer consists of a series of thickened rings and elongated girdles, both of which are somewhat fibrous in appearance and occasionally show differences in electron density. The ultrastructure of the “cement cells” indicates that these secretory regions are not cellular but rather a modified region of the syncytial integument that forms a belt-like gland around the animal. This gland is highly papillated due to localized folding of the intracytoplasmic lamina of the integument. The ultrastructure of the gland shows a voluminous swelling of the syncytium with abundant endoplasmic reticulum and secretion vesicles. At least three types of membrane-bound secretion vesicles are present based on electron density. We hypothesize that the gland is constitutively active but secretions are only released when a threshold level is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brodie AE (1970) Development of the cuticle in the rotifer Asplanchna brightwellii. Z Zellforsch Mikrosk Anat\ 105:512–515

    Google Scholar 

  • Clément P (1969) Premières observations sur l’ultrastructure comparèe des tèguments de Rotifère. Vie Milieu 20:461–482

    Google Scholar 

  • Clément P (1980) Phylogenetic relationship of rotifers, as derived from photoreceptor morphology and other ultrastructural analyses. Hydrobiologia 73:93–117

    Article  Google Scholar 

  • Clément P, Wurdak E (1991) Rotifera. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, volume 4, Aschelminthes. Wiley-Liss Inc, New York, pp 219–297

    Google Scholar 

  • Cubbitt C (1871) A rare melicertian. Mon Micr J 6:167–169

    Google Scholar 

  • Cubbitt C (1872) Remarks on the homological position of the members constituting the thecated section of the Rotatoria. Mon Micr 8:5–12

    Google Scholar 

  • Dawkins R (2016) The extended phenotype: the long reach of the gene. Oxford University Press, Oxford

  • Edmondson WT (1944) Ecological studies of sessile Rotatoria: Part I. Factors affecting distribution. Ecol Monogr 14(1):31–66

    Article  CAS  Google Scholar 

  • Edmondson WT (1945) Ecological studies of sessile Rotatoria, Part II: Dynamics of populations and social structures. Ecol Monogr 15(2):141–172

    Article  Google Scholar 

  • Fontaneto D, De Smet W (2015) Rotifera. In: Schmidt-Rhaesa A (ed) Gastrotricha, Cycloneuralia and Gnathifera. Volume 3: Gastrotricha and Gnathifera. De Gruyter, Berlin, pp 217–300

  • Fontaneto D, Melone G, Wallace RL (2003) Morphology of Floscularia ringens (Rotifera, Monogononta) from egg to adult. Invertebr Biol 122:231–240

    Article  Google Scholar 

  • Ford BJ (1982) The Rotifera of Antony van Leeuwoenhoek. J Quekett Microsc Club 34:362–373

    Google Scholar 

  • Gosse PH (1851) Architectural instincts of Melicerta ringens. Trans Min 3:58–64

    Google Scholar 

  • Hendelberg M, Morling G, Pejler B (1979) The ultrastructure of the lorica of the rotifer Keratella serrulata (Ehrbg). Zoon 7:49–54

    Google Scholar 

  • Hochberg R, Hochberg A, Chan C (2015) Ultrastructure of the rotifer integument: peculiarities of Sinantherina socialis (Monogononta: Gnesiotrocha). Invertebr Biol 134:181–188

    Article  Google Scholar 

  • Hochberg R, Yang H, Moore J (2017) The ultrastructure of escape organs: setose arms and cross-striated muscle in Hexarthra mira (Rotifera: Gnesiotrocha: Flosculariaceae). Zoomorphology. doi:10.1007/s00435-016-0339-2

    Google Scholar 

  • Koehler JK (1965) A fine structure study of the rotifer integument. J Ultrastruct Res 12:113–134

    Article  CAS  PubMed  Google Scholar 

  • Koehler JK (1966) Some comparative fine structure relationships of the rotifer integument. J Exp Zool 161:231–243

    Article  Google Scholar 

  • Kolisko A (1939) Über Conochilus unicornis und seine Koloniebildung. Internationale Revue der gesamten Hydrobiologie und Hydrographie 39(1–2):78–98

    Article  Google Scholar 

  • Rousselet CF (1889) Note on a New Rotifer, Limnias cornuella. J Quek Micr Club Ser 2 3:337 (pl. 4, figs. 11–14)

  • Schramm U (1978) Studies of the ultrastructure of the integument of the rotifer Habrotrocha rosa Donner (Aschelminthes). Cell Tissue Res 189:167–177

    CAS  PubMed  Google Scholar 

  • Segers H (2007) Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564:1–104. In: Zootaxa. Magnolia Press, Auckland

  • Storch V, Welsch U (1969) Über den Aufbau des Rotatorientegumentes. Z Zellforsch Mikrosk Anat 95:405–414

    Article  CAS  PubMed  Google Scholar 

  • Wallace RL, Snell TW (2009) Rotifera. Ecology and classification of North American freshwater invertebrates, 3rd edn, by Thorp JH, Covich AP, pp 173–235

  • Wallace RL, Snell TW, Ricci C, Nogrady T (2006) Rotifera Volume 1: Biology, ecology and systematics, 2nd edn. Backhuys Publishers, Leiden, The Netherlands, Knobi Productions, Ghent, Belgium

  • Wallace RL, Snell TW, Smith HA (2015) Phylum Rotifera. In: Thorp J, Rogers DC (eds) Ecology and general biology: Thorp and Covich’s freshwater invertebrates. Academic Press, New York, pp 225–271

    Chapter  Google Scholar 

  • Wright HGS (1950) A contribution to the study of Floscularia ringens. J Queckett Microsc Club 4(3):103–116

    Google Scholar 

  • Wright HGS (1954) The ringed tube of Limnias melicerta Weisse. Microscopy 10:13–19

    Google Scholar 

  • Wright HGS (1959) Development of the peduncle in a sessile rotifer. J Queckett Microsc Club 4(5):231–234

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the National Science Foundation to support this research (DEB 0918499 to R. Hochberg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by National Science Foundation (Grant number DEB 0918499 to R. Hochberg).

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Hochberg, R. Ultrastructure of the extracorporeal tube and “cement glands” in the sessile rotifer Limnias melicerta (Rotifera: Gnesiotrocha). Zoomorphology 137, 1–12 (2018). https://doi.org/10.1007/s00435-017-0371-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-017-0371-x

Keywords

Navigation