Skip to main content

Advertisement

Log in

Invertebrate trypsins: a review

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Food protein hydrolysis, a crucial step in digestion, is catalyzed by trypsin enzymes from the digestive apparatus of invertebrates. Trypsin appeared early in evolution and occurs in all phyla and, in the digestive systems of invertebrates, it became the most abundant proteinase. As in vertebrates, invertebrate trypsin is also present in several forms (isoenzymes). Its physiological importance in food protein digestion in several invertebrate species has emerged with compelling evidence; and several other physiological functions, such as regulation of digestive functions, are now settled. Recent advances in the knowledge of invertebrate trypsin synthesis, regulation, genetics, catalytic characteristics; structure, evolution, as well as inhibition, especially in non-Drosophilidae insects and in some crustaceans are reviewed. Most of the existing information is largely based on the use of several tools, including molecular techniques, to answer many still open questions and solve medical, agricultural, and food quality problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alarcón FJ, Martínez TF, Barranco P, Cabello T, Díaz M, Moyano FJ (2002) Digestive proteinases during development of larvae of red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Cruculionidae). Insect Biochem Mol Biol 32:265–274

    PubMed  Google Scholar 

  • Al-Mohanna SY, Nott JA (1989) Functional cytology of the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda) during the molt cycle. Mar Biol 101:535–544

    Google Scholar 

  • Al-Mohanna SY, Nott JA, Lane D (1985) Mitotic E- and secretory F-cells in the hepatopancreas of the shrimp Penaeus semisulcatus (Crustacea: Decapoda). J Mar Biol Assoc UK 65:901–910

    Google Scholar 

  • Amino R, Tanaka AS, Schenkman S (2001) Triapsin, an unusual activatable serine proteinase from the saliva of the hematophagous vector of Chagas disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol 31:465–472

    PubMed  CAS  Google Scholar 

  • Arnon R, Neurath H (1969) An immunological approach to the study of evolution of trypsins. Proc Natl Acad Sci USA 64:1623–1628

    Google Scholar 

  • Baptista A, Jonson P, Hough E, Petersen S (1998) The origin of trypsin: evidence for multiple gene duplications in trypsins. J Mol Evol 47:353–362

    PubMed  CAS  Google Scholar 

  • Barillas-Mury CV, Graf R, Hagedorn HH, Wells M (1991) cDNA and deduced amino acid sequence of a blood meal-induced trypsin from the mosquito Aedes aegypti. Insect Biochem 21:825–831

    CAS  Google Scholar 

  • Barillas-Mury CV, Wells MA (1993) Cloning and sequencing of the blood meal-induced late trypsin gene from the mosquito Aedes aegypti and characterization of the upstream regulatory region. Insect Mol Biol 2:7–12

    PubMed  CAS  Google Scholar 

  • Barret A, Rawlings N, Woessner J (1998) Handbook of proteolytic enzymes. Academic Press, San Diego

    Google Scholar 

  • Boigegrain R, Mattras H, Brehelin M, Coletti-Previero M (1994) Invertebrate proteinase inhibitors. Pure Appl Chem 66:1–7

    CAS  Google Scholar 

  • Borovsky D (2003) Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. J Exp Biol 206:3869–3875

    PubMed  CAS  Google Scholar 

  • Bown DP, Wilkinson HS, Gatehouse JA (1997) Differentially regulated inhibitor-sensitive and insensitive proteinase genes from phytophagous insect pest Helicoverpa armigera, are members of complex multigene families. Insect Biochem Mol Biol 27:625–638

    PubMed  CAS  Google Scholar 

  • Bricteux-Gregoire S, Schyns R, Florkin M (1971) Purification, properties and N-terminal sequence of goat trypsinogen. Biochim Biophys Acta 229:123–135

    PubMed  CAS  Google Scholar 

  • Briegel H, Lea AO (1977) Ecdysone, the ovarian hormone and intestinal proteases in mosquitoes. Experientia 33:813

    Google Scholar 

  • Briegel H, Lea AO (1979) Influence of the endocrine system on tryptic activity in female Aedes aegypti. J Insect Physiol 25:227–230

    CAS  Google Scholar 

  • Carreira S, Fueri C, Chaix JC, Puigserver A (1996) Dietary modulation of the mRNA stability of trypsin isozymes and the two forms of secretory trypsin inhibitor in the rat pancreas. Eur J Biochem 239:117–123

    PubMed  CAS  Google Scholar 

  • Casu RE, Jarmey JM, Elvin CM, Eisemann CH (1994) Isolation of a trypsin-like serine proteinase gene family from the sheep blowfly Lucilia cuprina. Insect Mol Biol 3:159–170

    PubMed  CAS  Google Scholar 

  • Celis-Guerrero L, García-Carreño FL, Navarrete del Toro MA (2004) Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus). Mar Biotechnol 6:262–269

    PubMed  CAS  Google Scholar 

  • Chen JM, Kukor Z, Le Marechal C, Toth M, Tsakiris L, Raguenes O, Ferec C, Sahin-Toth M (2003) Evolution of trypsinogen activation peptides. Mol Biol Evol 20:1767–1777

    PubMed  CAS  Google Scholar 

  • Cherqui A, Cruz N, Simoes N (2001) Purification and characterization of two serine proteinase inhibitors from the hemolymph of Mythimna unipuncta. Insect Biochem Mol Biol 31:761–769

    PubMed  CAS  Google Scholar 

  • Christie AE, Baldwin D, Turrigiano G, Graubard K, Marder E (1995) Immunocytochemical localization of multiple cholecystokinin-like peptides in the stomatogastric system of the crab Cancer borealis. J Exp Biol 198:263–271

    PubMed  CAS  Google Scholar 

  • Craik CS, Choo QL, Swift GH, Quinto C, MacDonald RJ, Rutter WJ (1984) Structure of two related rat pancreatic trypsin genes. J Biol Chem 259:14255–14264

    PubMed  CAS  Google Scholar 

  • D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Feller G, Gerday C (2002) Molecular basis of cold adaptation. Phil Trans R Soc Lond 357B:917–925

    Google Scholar 

  • Davie EW, Neurath H (1955) Identification of a peptide released during autocatalytic activation of trypsinogen. J Biol Chem 212:515–529

    PubMed  CAS  Google Scholar 

  • Davis CA, Riddell DC, Higgins MJ, Holden JJ, White BN (1985) A gene family in Drosophila melanogaster coding for trypsin-like enzymes. Nuuleic Acids Res 13:6605–6619

    CAS  Google Scholar 

  • de Albuquerque C, Muhlia-Almazán A, Hernández-Cortes P, Garcia-Carreño FL (2001) Proteinases from marine organisms. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology. Science Publishers, Plymouth, pp 209–238

    Google Scholar 

  • de Albuquerque C, García-Carreño FL, Navarrete del Toro MA (2002) Trypsin and trypsin inhibitors from Penaeid shrimp. J Food Biochem 26:233–251

    Google Scholar 

  • de Backer M, McSweeney S, Rasmussen HB, Riise BW, Lindley P, Hough E (2002) The 1.9 Å crystal structure of heat-labile shrimp alkaline phosphatase. J Mol Biol 318:1265–1274

    PubMed  Google Scholar 

  • De Haën C, Neurath H, Teller DC (1975) The phylogeny of trypsin-related serine proteinases and their zymogens. New methods for the investigation of distant evolutionary relationships. J Mol Biol 92:225–259

    PubMed  Google Scholar 

  • De Leo F, Bonadé-Bottino M, Ceci LR, Gallerani R, Jouanin L (2001) Effect of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Mol Biol 31:593–602

    PubMed  Google Scholar 

  • Delcroix M, Sajid M, Caffrey CR, Lim K-C, Dvorak J, Hsieh I, Bahgat M, Dissous C, McKerrow JH (2006) A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 284:39316–39329

    Google Scholar 

  • Diaz-Mendoza M, Ortego F, García de Lacoba M, Magaña C, de la Poza M, Farinós GP, Castañera P, Hernández-Crespo P (2005) Diversity of trypsins in the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae), revealed by nucleic acid sequences and enzyme purification. Insect Biochem Mol Biol 35:1005–1020

    PubMed  CAS  Google Scholar 

  • Dionysius DA, Hoek KS, Milne JM, Slattery SL (1993) Trypsin-like enzyme from sand crab (Portunus pelagicus): purification and characterization. J Food Sci 58:780–784

    CAS  Google Scholar 

  • Douglas SE, Gallant JW (1998) Isolation of cDNAs for trypsinogen from the winter flounder, Pleuronectes americanus. J Mar Biotechnol 6:214–219

    PubMed  Google Scholar 

  • Ehrmann M, Clausen T (2004) Proteolysis as a regulatory mechanism. Ann Rev Genet 38:709–724

    PubMed  CAS  Google Scholar 

  • Emi M, Nakamura Y, Ogawa M, Yamamoto T, Nishide T, Mori T, Matsubara K (1986) Cloning, characterization and nucleotide sequences of two cDNAs encoding human pancreatic trypsinogens. Gene 41:305–310

    PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    PubMed  CAS  Google Scholar 

  • Figueiredo MSRB, Kricker JA, Anderson AJ (2001) Digestive enzyme activities in the alimentary tract of redclaw crayfish, Cherax quadricarinatus (Decapoda, Parastacidae). J Crust Biol 21:334–344

    Google Scholar 

  • Fletcher TS, Alhadeff M, Craik CS, Langerman C (1987) Isolation and characterization of a cDNA encoding rat cationic trypsinogen. Biochemistry 26:3081–3086

    PubMed  CAS  Google Scholar 

  • Fodor K, Harmat V, Hetenyi C, Kardos J, Antal J, Perczel A, Patthy A, Katona G, Graf L (2005) Extended intermolecular interactions in a serine proteinase–canonical inhibitor complex account for strong and highly specific inhibition. J Mol Biol 350:156–169

    PubMed  CAS  Google Scholar 

  • Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, Kawabata S-I, Huber R, Bode W, Bock PE (2003) Staphylocoagulase is a prototype for the mechanism of cofactor-induce zymogen activation. Nature 425:535–539

    PubMed  CAS  Google Scholar 

  • Galgani FG, Benyamin Y, Van Wormhoudt A (1985) Purification, properties and immunoassay of trypsin from the shrimp Penaeus japonicus. Comp Biochem Physiol 81B:447–452

    CAS  Google Scholar 

  • García-Carreño FL, Carrillo O, Navarrete MA (1998) Control of digestive functions in shrimp. I. An inhibitor of the trypsin activity in the hepatopancreas. In: von Vaupel Klein JC, Schram FR (eds) Proceedings of fourth international crustacean congress, Brill, Leiden, pp 915–922

    Google Scholar 

  • García-Carreño F, An H, Haard N (2000) Protease inhibitors in food processing. In: Michaud D (ed) Recombinant protease inhibitors in plants, pp 215–223. Landes Biosciences and http://Eurekah.com, Georgetown. TX, pp 214–220

  • García-Carreño F, Hernández-Cortés P (2000) Use of protease inhibitors in seafood products In: Naard N, Simpson B (eds) Seafood enzymes. Marcel Dekker, New York, pp 531–547

    Google Scholar 

  • Gibbs J, Fauser DJ, Rowe EA, Rolls BJ, Rolls ET, Maddison SP (1979) Bombesin suppresses feeding in rats. Nature 282:208–210

    PubMed  CAS  Google Scholar 

  • Gibson R, Barker PL (1979) The decapod hepatopancreas. Oceanogr Mar Biol Ann Rev 17:285–346

    Google Scholar 

  • Gooding RH (1975) Digestive enzymes and their control in haematophagus arthropods. Acta Trop 32:96–111

    PubMed  CAS  Google Scholar 

  • Graf R, Lea AO, Briegel H (1998) A temporal profile of the endocrine control of trypsin synthesis in the yellow fever mosquito, Aedes aegypti. J Insect Physiol 44:451–454

    PubMed  CAS  Google Scholar 

  • Gudmundsdóttir A (2002). Cold-adapted and mesophilic brachyurins. Biol Chem 383:1125–1131

    PubMed  Google Scholar 

  • Gudmundsdóttir A, Gudmundsdóttir E, Oskarsson S, Bjarnason JB, Eakin AK, Craik CS (1993) Isolation and characterization of cDNAs from Atlantic cod encoding two different forms of trypsinogen. Eur J Biochem 217:1091–1097

    PubMed  Google Scholar 

  • Guy O, Lombardo D, Bartlet DC, Amic J, Figarella C (1978) Two human trypsinogens. Purification, molecular properties, and N-terminal sequences. Biochemistry 17:1669–1675

    PubMed  CAS  Google Scholar 

  • Harshman LG, James AA (1998) Differential gene expression in insects: transcriptional control. Annu Rev Entomol 43:671–700

    PubMed  CAS  Google Scholar 

  • Heger A, Ponting CP (2008) Evolutionary rate analyses of orthologs and paralog from 12 Drosophila genomes. Genome Res 17:1837–1849

    Google Scholar 

  • Hehemann JH, Redecke L, Perbandt M, Saborowski R, Betzel C (2007) Crystallization and preliminary X-ray diffraction studies of trypsin-like proteinases from the gastric fluid of the marine crab Cancer pagurus. Acta Crystallograph Sect F Struct Biol Cryst Commun 1:242–245

    Google Scholar 

  • Hernández-Cortés P, Quadros W, Navarrete del Toro A, Portillo G, Colado G, García-Carreño FL (1999a) Rate of ingestion and proteolytic activity in digestive system during continuous feeding of juveniles shrimps. J Appl Aquacult 9:35–45

    Google Scholar 

  • Hernández-Cortes P, Cerenius L, García-Carreño FL, Soderhall K (1999b) Trypsin from Pacifastacus leniusculus hepatopancreas: purification and cDNA cloning of the synthesized zymogen. Biol Chem 380:499–501

    PubMed  Google Scholar 

  • Hu G, Leger RJ (2004) A phylogenomic approach to reconstructing the diversification of serine proteinases in fungi. J Evol Biol 17:1204–1214

    PubMed  CAS  Google Scholar 

  • Huang X, Knoell C, Frey G, Hazegh-Azam M, Tashjian AH, Hedstrom L, Abeles RH, Timasheff SN (2001) Modulation of recombinant human prostate-specific antigen: activation by Hofmeister salts and inhibition by azapeptides. Biochemistry 40:11734–11741

    PubMed  CAS  Google Scholar 

  • Huber R, Kukla D, Bode W, Schwager P, Bartels K, Deisenhofer J, Steigemann W (1974) Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor II. Crystallographic refinement at 1.9 A resolution. J Mol Biol 89:73–101

    PubMed  CAS  Google Scholar 

  • Icely JD, Nott JA (1992) Digestion and absorption: digestive system and associated organs. In: Harrison FW (ed) Microscopic anatomy of invertebrates. Wiley-Liss, New York, pp 147–202

    Google Scholar 

  • Johnsen AH, Duve H, Davey M, Hall M, Thorpe A (2000) Sulfakinin neuropeptides in a crustacean. Isolation, identification and tissue localization in the tiger prawn Penaeus monodon. Eur J Biochem 267:1153–1160

    PubMed  CAS  Google Scholar 

  • Johnson SC, Ewart KV, Osborne JA, Delage D, Ross NW, Murray HM (2002) Molecular cloning of trypsin cDNAs and trypsin gene expression in the salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae). Parasitol Res 88:789–796

    PubMed  CAS  Google Scholar 

  • Kalhok SE, Tabak LM, Prosser DE, Brook W, Downe AER, White BN (1993) Isolation, sequencing and characterization of two DNA clones coding for trypsin-like enzymes from the midgut of Aedes aegypti. Insect Mol Biol 2:71–79

    PubMed  CAS  Google Scholar 

  • Keil B, Dlouha V, Holeysovsky V, Sorm F (1968) Hypothesis of three-dimensional arrangement of polypeptide chain in trypsin. Coll Czch Chem Comm 33:2307–2315

    CAS  Google Scholar 

  • Kim JC, Cha SH, Jeong ST, Oh SK, Byun SM (1991) Molecular cloning and nucleotide sequence of Streptomyces griseus trypsin gene. Biochem Biophys Res Commun 181:707–713

    PubMed  CAS  Google Scholar 

  • Kishimura H, Hayashi K (2003) N-terminal amino acid sequence of trypsin from the pyloric ceca of starfish Asterias amurensis. Fisheries Sci 69:867–869

    Google Scholar 

  • Klein B, Le Moullac G, Sellos D, Van Wormhoudt A (1996) Molecular cloning and sequencing of trypsin cDNAs from Penaeus vannamei (Crustacea, Decapoda): use in assessing gene expression during the moult cycle. Int J Biochem Cell Biol 28:551–563

    PubMed  CAS  Google Scholar 

  • Klein B, Sellos D, Van Wormhoudt A (1998) Genomic organization and polymorphism of a Crustacean trypsin multi-gene family. Gene 216:123–129

    PubMed  CAS  Google Scholar 

  • Kollien AH, Waniek PJ, Prols F, Habedank B, Schaub GA (2004) Cloning and characterization of a trypsin-encoding cDNA of the human body louse Pediculus humanus. Insect Mol Biol 13:9–18

    PubMed  CAS  Google Scholar 

  • Kossiakoff AA, Chambers JL, Kay LM, Stroud RM (1977) Structure of bovine trypsinogen at 1.9 Å resolution. Biochemistry 16:654–664

    PubMed  CAS  Google Scholar 

  • Kristjáansdóttir KS (1999) Isolation and characterization of a broad specificity collagenolytic protease from Antarctic krill. M.Sc thesis, University of Iceland, Iceland

  • Kristjáansdóttir S, Gudmundsdóttir A (2000) Propeptide dependent activation of the Antarctic krill euphauserase precursor produced in yeast. Eur J Biochem 267:2632–2639

    Google Scholar 

  • Krowarsch D, Cierpicki T, Jelen F, Otlewski J (2003) Canonical protein inhibitors of serine proteinases. Cell Mol Life Sci (CMLS) 60:2427–2444

    CAS  Google Scholar 

  • Kuehne W (1876) Ueber das trypsin (Enzyme des Pankreas). Heidelberg Nat Med Ver 1:194–198

    Google Scholar 

  • Kurokawa T, Suzuki T, Ohta H, Kagawa H, Tanaka H, Unuma T (2002) Expression of pancreatic enzyme genes during the early larval stage of Japanese eel, Anguilla japonica. Fish Sci 68:736–744

    CAS  Google Scholar 

  • Kvamme BO, Frost P, Nilsen F (2004) The cloning and characterization of full-length trypsins from the salmon louse Lepeophtheirus salmoni. Mol Biochem Parasitol 136:303–307

    PubMed  CAS  Google Scholar 

  • Kvamme BO, Kongshaug H, Nilsen F (2005) Organisation of trypsin genes in the salmon louse (Lepeophtheirus salmonis, Crustacea, copepoda) genome. Gene 352:63–74

    PubMed  CAS  Google Scholar 

  • Lam W, Coast GM, Rayne RC (2000) Characterisation of multiple tripsins from the midgut of Locusta migratoria. Insect Biochem Mol Biol 30:85–94

    PubMed  CAS  Google Scholar 

  • Larson BA, Vigna SR (1983) Species and tissue distribution of cholecystokinin/gastrin-like substances in some invertebrates. Comp Endocrinol 50:469–475

    CAS  Google Scholar 

  • Laskowski M, Kato I (1980) Protein inhibitors of proteinases. Ann Rev Biochem 49:593–626

    PubMed  CAS  Google Scholar 

  • Le Huerou I, Wicker C, Guilloteau P, Toullec R, Puigserver A (1990) Isolation and nucleotide sequence of cDNA clone for bovine pancreatic anionic trypsinogen. Structural identity within the trypsin family. Eur J Biochem 193:767–773

    PubMed  CAS  Google Scholar 

  • Lehnert SA, Johnson SE (2002) Expression of hemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of the black tiger shrimp Penaus monodon. Comp Biochem Phys B 133:63–171

    Google Scholar 

  • Lehane SM, Assinder SJ, Lehane MJ (1998) Cloning, sequencing, temporal expression and tissue-specificity of two serine proteinases from the midgut of the blood-feeding fly Stomoxys calcitrans. Eur J Biochem 254:290–296

    PubMed  CAS  Google Scholar 

  • Leiros HKS, Willassen NP, Smalås AO (2000) Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049

    PubMed  CAS  Google Scholar 

  • Lemos D, Hernández-Cortés MP, Navarrete del Toro MA, García-Carreño FL, Phan VN (1999) Ontogenetic variation in digestive proteinase activity of larvae and postlarvae of pink shrimp Farfantepenaeus paulensis (crustacea: Decapoda:Penaeidae). Mar Biol 135:653–662

    CAS  Google Scholar 

  • Le Moullac G, van Wormhoudt A (1994) Adaptation of digestive enzymes to dietary protein, carbohydrate and fiber levels and influence of protein and carbohydrate quality in Penaeus vannamei larvae (Crustacea, Decapoda). Aquat Liv Res 7:203–210

    Google Scholar 

  • Lhoste EF, Fiszlewicz M, Gueugneau AM, Tranchant T, Corring T (1994) Early adaptation of pancreas to protein-enriched feed: role of cholecystokinin and gastrin-releasing peptide. Pancreas 9:624–632

    PubMed  CAS  Google Scholar 

  • Lopes AR, Terra WR (2003) Purification, properties and substrate specificity of a digestive trypsin from Periplaneta americana (Dictyoptera) adults. Insect Biochem Mol Biol 33:407–415

    PubMed  CAS  Google Scholar 

  • Lopes AR, Juliano MA, Marana SR, Juliano L, Terra WR (2006) Substrate specificity of insect trypsins and the role of their subsites in catalysis. Insect Biochem Mol Biol 36:130–140

    PubMed  CAS  Google Scholar 

  • Louvard MN, Puigserver A (1974) On bovine and porcine anionic trypsinogens. Biochem Biophys Acta 371:177–185

    PubMed  CAS  Google Scholar 

  • Lu SJ, Pennington JE, Stonehouse AR, Mobula MM, Wells MA (2006) Reevaluation of the role of early trypsin activity in the transcriptional activation of the late trypsin gene in the mosquito Aedes aegypti. Insect Biochem Mol Biol 36:336–343

    PubMed  CAS  Google Scholar 

  • MacDonald RJ, Stary SJ, Swift GH (1982) Two similar but nonallelic rat pancreatic trypsinogens. Nucleotide sequences of the cloned cDNA. J Biol Chem 257:9724–9732

    PubMed  CAS  Google Scholar 

  • Maeda-Martínez A, Obregon-Barboza V, Navarrete del Toro MA, Obregon-Barboza H, García-Carreño FL (2000) Trypsin-like enzymes from two morphotypes of the ‘living fossil’ Triops (Crustacea: Brachiopoda:Notostraca). Comp Biochem Physiol B 126:317–323

    PubMed  Google Scholar 

  • Malavazi-Piza K, Araujoa M, Godinhob R, Tanaka A (2004) Effect of invertebrate serine proteinase inhibitors on carrageenan-induced pleural exudation and bradykinin release. Int Immunopharmacol 4:1401–1408

    PubMed  CAS  Google Scholar 

  • Male R, Lorens JB, Smalas AO, Torrissen KR (1995) Molecular cloning and characterization of anionic and cationic variants of trypsin from Atlantic salmon. Eur J Biochem 232:677–685

    PubMed  CAS  Google Scholar 

  • Martin JW, Haney TA (2005) Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zool J Linn Soc 145:445–522

    Google Scholar 

  • Meyering-Vos M, Müller A (2007) Structure of the sulfakinin cDNA and gene expression from the Mediterranean field cricket Gryllus bimaculatus. Insect Mol Biol 16:445–454

    PubMed  CAS  Google Scholar 

  • Muhlia-Almazán A, García-Carreño FL (2002) Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comp Biochem Physiol B 133:383–394

    PubMed  Google Scholar 

  • Müller HM, Crampton JM, della Torre A, Sinden R, Crisanti A (1993) Members of a trypsin gene family in Anopheles gambiae are induced in the gut by blood meal. EMBO J 12:2891–2900

    PubMed  Google Scholar 

  • Müller HM, Catteruccia F, Vizioli J, della Torre A, Crisanti A (1995) Constitutive and blood meal-induced trypsin genes in Anopheles gambiae. Exp Parasitol 81:371–385

    PubMed  Google Scholar 

  • Myrnes B, Nilsen IW (2007) Glutathione S-transferase from the Icelandic scallop (Chlamys islandica): Isolation and partial characterization. Comp Biochem Physiol 144C:403–407

    CAS  Google Scholar 

  • Navarrete del Toro MA, García-Carreño FL, Díaz LM, Celis-Guerrero L, Saborowski R (2006) Aspartic proteinases in the digestive tract of marine decapod crustaceans. J Exp Zool 305A:645–654

    Google Scholar 

  • Neurath H (1984) Evolution of proteolytic enzymes. Science 224:350–357

    PubMed  CAS  Google Scholar 

  • Neurath H (1994) Proteolytic enzymes past and present: the second golden era. Protein Sci 3:1734–1739

    Article  PubMed  CAS  Google Scholar 

  • Neurath H (2001) Recollections: from proteases to proteomics. Protein Sci 10:892–904

    PubMed  CAS  Google Scholar 

  • Nichols R, Schneuwly SA, Dixon JE (1988) Identification and characterization of a Drosophila homologue to the vertebrate neuropeptide cholecystokinin. J Biol Chem 263:12167–12170

    PubMed  CAS  Google Scholar 

  • Noriega FG, Wells MA (1999) A molecular view of trypsin synthesis in the midgut of Aedes aegypti. J Insect Physiol 45:613–620

    PubMed  CAS  Google Scholar 

  • Noriega FG, Barillas-Mury CV, Wells MA (1994) Dietary control of late-trypsin gene transcription in Aedes aegypti. Insect Biochem Mol Biol 24:627–631

    PubMed  CAS  Google Scholar 

  • Noriega FG, Pennington JE, Barrillas-Mury CV, Wang XY, Wells MA (1996) Aedes aegypti midgut early trypsin is post-transcriptionally regulated by blood feeding. Insect Mol Biol 5:25–29

    PubMed  CAS  Google Scholar 

  • Northrup JH, Kunitz M (1931) Isolation of protein crystals possessing tryptic activity. Science 73:262–263

    Google Scholar 

  • Northrup JH, Kunitz M, Herriott RM (1948) Crystalline enzymes. Columbia University Press, New York

    Google Scholar 

  • Novillo C, Castañera P, Ortego F (1999) Isolation and characterization of two digestive trypsin-like proteinases from larvae of the stalk corn borer Sesamia nonagrioides. Insect Biochem Mol Biol 29:177–184

    PubMed  CAS  Google Scholar 

  • Ollivaux C, Soyes D (2000) Dynamics of biosynthesis and release of crustacean hyperglycemic hormone isoforms in the X-organ/sinus gland complex of the crayfish Orconectes limosus. Eur J Biochem 267:5106–5114

    PubMed  CAS  Google Scholar 

  • Øverbø K, Myrnes B (2006) Deoxyribonuclease II from the Icelandic scallop (Chlamys islandica): isolation and partial characterization. Comp Biochem Physiol 143B:315–318

    Google Scholar 

  • Pancer Z, Lenck J, Ronkevick B, Steffen R, Muller I, Muller WE (1996) Molecular cloning and sequence analysis of two cDNAs coding for putative anionic trypsinogens from the colonial Urochordate Botryllus schlosseri (Ascidiacea). Mol Mar Biol Biotechnol 5:326–333

    PubMed  CAS  Google Scholar 

  • Pasternak A, Ringe D, Hedstrom L (1999) Comparison of anionic and cationic trypsinogens: the anionic activation domain is more flexible in solution and differs in its mode of BPTI binding in the crystal structure. Protein Sci 8:253–259

    PubMed  CAS  Google Scholar 

  • Peterson AM, Barillas-Mury CV, Wells MA (1994) Sequence of three cDNAs encoding an alkaline midgut trypsin from Manduca sexta. Insect Biochem Mol Biol 24:463–471

    PubMed  CAS  Google Scholar 

  • Pfleiderer G, Zwilling R, Sonneborn HH (1967) Eine proteinase vom molekulargewicht 11000 und eine trypsinahnliche fraktion aus Astacus fluviatilis. Hoppe-Seyler’s Z Physiol Chem 348:1319–1331

    PubMed  CAS  Google Scholar 

  • Pfleiderer G, Linke R, Reinhardt G (1970) On the evolution of endopeptidases. 8. Cross-reactions of trypsins and chymotrypsins of different species. Comp Biochem Physiol 33:955–967

    PubMed  CAS  Google Scholar 

  • Pils B, Shultz J (2004) Inactive enzyme homologues find new function in regulatory processes. J Mol Biol 340:399–404

    PubMed  CAS  Google Scholar 

  • Pinsky SD, La Forge KS, Scheele G (1985) Differential regulation of trypsinogen mRNA translation: full-length mRNA sequences encoding two oppositely charged trypsinogen isoenzymes in the dog pancreas. Mol Cell Biol 5:2669–2676

    PubMed  CAS  Google Scholar 

  • Resch-Sedlmeier G, Sedlmeier D (1999) Release of digestive enzymes from the crustacean hepatopancreas: effect of vertebrate gastrointestinal hormones. Comp Biochem Physiol B 123:187–192

    PubMed  CAS  Google Scholar 

  • Roach JC, Wang K, Gan L, Hood L (1997) The molecular evolution of the vertebrate trypsinogens. J Mol Evol 45:640–652

    PubMed  CAS  Google Scholar 

  • Rungruangsak-Torrisen K, Carter CG, Sundby A, Berg A, Houlihan DF (1999) Maintenance ration, protein synthesis capacity, plasma insulin and growth of Atlantic salmon (Salmo salar L.) with genetically different trypsin isoenzymes. Fish Physiol Biochem 21:223–233

    Google Scholar 

  • Rypniewsky WR, Hastrup S, Betzel C, Dauter M, Dauter Z, Papendorf G, Branner S, Wilson KS (1993) The sequence and X-ray structure of trypsin from Fusarium oxysporum. Prot Eng Des Selec 6:341–348

    Google Scholar 

  • Rypniewsky WR, Perrakis A, Vorgias CE, Wilson KS (1994) Evolutionary divergence and conservation of trypsin. Protein Eng 7:57–64

    Google Scholar 

  • Saborowski R, Sahling G, Navarrete del Toro MA, Garcia-Carreño F (2004) Stability and effects of organic solvents on endopeptidases from the gastric fluid of the marine crab Cancer pagurus. J Mol Catal-B Enzym 30:109–118

    CAS  Google Scholar 

  • Sahin-Tóth M (2000) Human cationic trypsinogen. J Biol Chem 275:22750–22755

    PubMed  Google Scholar 

  • Sahin-Toth M, Toth M (2000) Gain-of-function mutations associated with hereditary pancreatitis enhance autoactivation of human cationic trypsinogen. Biochem Bioph Res Co 278:286–289

    CAS  Google Scholar 

  • Sainz JC, García-Carreño FL, Hernández-Cortés P (2004a) Penaeus vannamei isotrypsins: purification and characterization. Comp Biochem Physiol 138:155–162

    Google Scholar 

  • Sainz JC, García-Carreño FL, Sierra-Beltrán A, Hernández-Cortés P (2004b) Trypsin synthesis and storage as zymogen in the midgut gland of the shrimp Litopenaeus vannamei. J Crustacean Biol 24:266–273

    Google Scholar 

  • Sainz JC, García-Carreño FL, Cordova-Murueta J, Cruz-Hernandez P (2005) Penaeus vannamei (Boone, 1931) isotrypsins, genotype and modulation. J Exp Mar Biol Ecol 326:105–113

    CAS  Google Scholar 

  • Salomon M, Buchholz F (2000) Effects of temperature on the respiration rates and the kinetics of citrate synthase in two species of Idotea (Isopoda, Crustacea). Comp Biochem Physiol 125B:71–81

    CAS  Google Scholar 

  • Sánchez-Paz A, García-Carreño FL, Muhlia-Almazán A, Hernández-Saavedra NY, Yepiz-Plascencia G (2003) Differential expression of trypsin mRNA in the white shrimp (Penaeus vannamei) midgut gland under starvation conditions. J Exp Mar Biol Ecol 292:1–17

    Google Scholar 

  • Schrøder-Leiros HK, Willassen N, Smalås A (2000) Structural comparison of psychrophilic and mesophilic trypsins: elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049

    Google Scholar 

  • Schyns R, Bricteux-Gregoire S, Florkin M (1969) Purification, properties and N-terminal sequence of sheep trypsinogen. Biochim Biophys Acta 175:97–112

    PubMed  CAS  Google Scholar 

  • Sedlmeier D (1988) The crustacean hyperglycemic hormone (CHH) releases amylase from the crayfish midgut gland. Regul Peptides 20:91–98

    CAS  Google Scholar 

  • Shah PK, Tripathi LP, Jensen LJ, Gahnim M, Mason C, Furlong EE, Rodrigues V, White KP, Bork P, Sowdhamini R (2008) Enhaced function annotations for Drosophila serine proteases: a case study for systematic annotation of multi-member gene families. Gene 407:199–215

    PubMed  CAS  Google Scholar 

  • Shen Z, Jacobs-Lorena M (1998) Nuclear factor recognition sites in the gut-specific enhancer region of an Anopheles gambiae trypsin gene. Insect Biochem Molec Biol 28:1007–1012

    CAS  Google Scholar 

  • Shi YB, Brown DD (1990) Developmental and thyroid hormone-dependent regulation of pancreatic genes in Xenopus laevis. Genes Dev 4:1107–1113

    PubMed  CAS  Google Scholar 

  • Skavdis G, Siden-Kiamos I, Müller HM, Crisanti A, Louis C (1996) Conserved function of Anopheles gambiae midgut-specific promoters in the fruitfly. EMBO J 15:344–350

    PubMed  CAS  Google Scholar 

  • Smalås AO, Heimstad ES, Hordvik A, Willassen NP, Male R (1994) Cold adaption of enzymes: structural comparison between salmon and bovine trypsins. Proteins 20:149–166

    PubMed  Google Scholar 

  • Sotelo-Mundo RR, López-Zavala AA, Garcia-Orozco KD, Arvizu-Flores AA, Velázquez-Contreras EF, Valenzuela-Soto EM, Rojo-Dominguez A, Kanost MR (2007) The lysozyme from insect (Manduca sexta) is a cold-adapted enzyme. Protein Pept Lett 14:774–778

    PubMed  CAS  Google Scholar 

  • Southan C (2000) Assessing the proteinase and proteinase inhibitor content of the human genome. J Peptide Sci 6:453–458

    CAS  Google Scholar 

  • Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to proteinase in a widely conserved heat shock protein. Cell 97:333–347

    Google Scholar 

  • Steiner JM, Medinger TL, Williams DA (1997) Purification and partial characterization of feline trypsin. Comp Biochem Physiol B 116:87–93

    PubMed  CAS  Google Scholar 

  • Sweet RM, Wright HT, Janin J, Chothia CH, Blow DM (1974) Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6-Å resolution. Biochemistry 13:4212–4228

    PubMed  CAS  Google Scholar 

  • Teschke M, Saborowski R (2005) Cysteine proteinases substitute for serine proteinases in the midgut glands of Crangon crangon and Crangon allmani (Decapoda: Caridea). J Exp Mar Biol Ecol 316:213–229

    CAS  Google Scholar 

  • Titani K, Sasagawa T, Woodbury RG, Ericsson LH, Dorsam H, Kraemer M, Neurath H, Zwilling R (1983) Amino acid sequence of crayfish (Astacus fluviatilis) trypsin. Biochemistry 22:1459–1465

    PubMed  CAS  Google Scholar 

  • Titani K, Torff HJ, Hormel S, Kumar S, Walsh KA, Rodl J, Neurath H, Zwilling R (1987) Amino acid sequence of a unique protease from the crayfish Astacus fluviatilis. Biochemistry 26:222–226

    PubMed  CAS  Google Scholar 

  • Torfs P, Baggerman G, Meeusen T, Nieto J, Nachman RJ, Calderon J (2002) Isolation, identification, and synthesis of a disulfated sulfakinin from the central nervous system of an arthropod, the white shrimp Litopenaeus vannamei. Biochem Bioph Res Co 299:312–320

    CAS  Google Scholar 

  • Tschesche H, Kolkenbrock H (1984) An inhibitor of elastase from Anemonia sulcata. Chem Peptide Protein 2:350–354

    Google Scholar 

  • Turkiewicz M, Galas E, Kalinowska H (1991) Collagenolytic serine protease from Euphausia superba Dana (Antarctic krill). Comp Biochem Physiol 99B:359–371

    CAS  Google Scholar 

  • Vogt G, Stocker W, Storch V, Zwilling R (1989) Biosynthesis of Astacus protease a digestive enzyme from crayfish. Histochemistry 91:373–381

    PubMed  CAS  Google Scholar 

  • Volpicella M, Ceci LR, Cordewener J, America T, Gallerani R, Bode W, Jongsma MA, Beekwilder J (2003) Properties of purified gut trypsin from Helicoverpa zea, adapted to proteinase inhibitors. Eur J Biochem 270:10–19

    PubMed  CAS  Google Scholar 

  • Walsh KA, Kauffman DL, Sampath-Kumar KSV, Neurath H (1964) On the structure and function of bovine trypsinogen and trypsin. Proc Natl Acad Sci USA 51:301–308

    PubMed  CAS  Google Scholar 

  • Walsh KA, Wilcox PE (1970) Serine proteinases. Meth Enzymol 19:31–41

    Google Scholar 

  • Wang K, Gan L, Lee I, Hood L (1995) Isolation and characterization of the chicken trypsinogen gene family. Biochem J 307:471–479

    PubMed  CAS  Google Scholar 

  • Wang S, Magoulas C, Hickey D (1999) Concerted evolution within a trypsin gene cluster in Drosophila. Mol Biol Evol 16:1117–1124

    PubMed  CAS  Google Scholar 

  • Ward CW (1975) Properties and specificity of the major anionic trypsin-like enzyme in the keratinolytic larvae of the webbing clothes moth. Biochim Biophys Acta 391:201–211

    PubMed  CAS  Google Scholar 

  • Webb EC (1993) Enzyme nomenclature: a personal perspective. FASEB J 7:1192–1194

    PubMed  CAS  Google Scholar 

  • Williams AB (1980) A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea: Decapoda: Brachyura). Proc Biol Soc Wash 93:443–472

    Google Scholar 

  • Williams AB, Chace FA Jr (1982) A new caridean shrimp of the family Bresiliidae from thermal vents of the Galapagos Rift. J Crust Biol 2:136–147

    Google Scholar 

  • Xiong B, Jacobs-Lorena M (1995) The black fly Simulium vittatum trypsin gene: characterization of the 5′-upstream region and induction by blood meal. Exp Parasitol 81:363–370

    PubMed  CAS  Google Scholar 

  • Yan XH, DeBondt HL, Powell CC, Bullock RC, Borovsky D (1999) Sequencing and characterization of the citrus weevil, Diaprepes abbreviatus, trypsin cDNA. Effect of Aedes trypsin modulating oostatic factor on trypsin biosynthesis. Eur J Biochem 262:627–636

    PubMed  CAS  Google Scholar 

  • Yang YJ, Davies D (1971) Trypsin and chymotrypsin during metamorphosis in Aedes aegypti and properties of the chymotrypsin. J Insect Physiol 17:117–131

    PubMed  CAS  Google Scholar 

  • Zecchinon L, Claverie P, Collins T, D’Amico S, Delille D, Feller G, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Sonan G, Gerday C (2001) Did psychrophilic enzymes really win the challenge? Extremophiles 5:313–321

    PubMed  CAS  Google Scholar 

  • Zhu YC, Baker JE (1999) Characterization of midgut trypsin-like enzymes and three trypsinogen cDNAs from the lesser grain borer, R. dominica (Coleoptera: Bostrichidae). Insect Biochem Mol Biol 29:1053–1063

    PubMed  CAS  Google Scholar 

  • Zhu YC, Kramer KJ, Dowdy AK, Baker JE (2000) Trypsinogen-like cDNAs and quantitative analysis of mRNA levels from the Indian meal moth, Plodia interpunctella. Insect Biochem Mol Biol 30:1027–1035

    PubMed  CAS  Google Scholar 

  • Zollner H (1993) Handbook of enzyme inhibitors. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Zwilling R, Neurath H (1981) Invertebrate proteinases. Methods Enzymol 80:633–664

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando L. García-Carreño.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhlia-Almazán, A., Sánchez-Paz, A. & García-Carreño, F.L. Invertebrate trypsins: a review. J Comp Physiol B 178, 655–672 (2008). https://doi.org/10.1007/s00360-008-0263-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0263-y

Keywords

Navigation