Skip to main content

Advertisement

Log in

Co-localization of serine/threonine kinase 33 (Stk33) and vimentin in the hypothalamus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We investigate the immunoreactivity of serine/threonine kinase 33 (Stk33) and of vimentin in the brain of mouse, rat and hamster. Using a Stk33-specific polyclonal antibody, we show by immunofluorescence staining that Stk33 is present in a variety of brain regions. We found a strong staining in the ependymal lining of all cerebral ventricles and the central canal of the spinal cord as well as in hypothalamic tanycytes. Stk33 immunoreactivity was also found in circumventricular organs such as the area postrema, subfornical organ and pituitary and pineal glands. Double-immunostaining experiments with antibodies against Stk33 and vimentin showed a striking colocalization of Stk33 and vimentin. As shown previously, Stk33 phosphorylates recombinant vimentin in vitro. Co-immunoprecipitation experiments and co-sedimentation assays indicate that Stk33 and vimentin are associated in vivo and that this association does not depend on further interacting partners (Brauksiepe et al. in BMC Biochem 9:25, 2008). This indicates that Stk33 is involved in the dynamics of vimentin polymerization/depolymerization. Since in tanycytes the vimentin expression is regulated by the photoperiod (Kameda et al. in Cell Tissue Res 314:251–262, 2003), we determine whether this also holds true for Stk33. We study hypothalamic sections from adult Djungarian hamsters (Phodopus sungorus) held under either long photoperiods (L:D 16:8 h) or short photoperiods (L:D 8:16 h) for 2 months. In addition, we examine whether age-dependent changes in Stk33 protein content exist. Our results show that Stk33 in tanycytes is regulated by the photoperiod as is the case for vimentin. Stk33 may participate in photoperiodic regulation of the endocrine system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akmayev IG, Fidelina OV, Kabolova ZA, Popov AP, Schitkova TA (1973) Morphological aspects of the hypothalamic-hypophyseal system. IV. Medial basal hypothalamus. An experimental morphological study. Z Zellforsch Mikrosk Anat 137:493–512

    Article  CAS  PubMed  Google Scholar 

  • Baroncini M, Allet C, Leroy D, Beauvillain JC, Francke JP, Prevot V (2007) Morphological evidence for direct interaction between gonadotrophin-releasing hormone neurones and astroglial cells in the human hypothalamus. J Neuroendocrinol 19:691–702

    Article  CAS  PubMed  Google Scholar 

  • Benitez-King G, Anton-Tay F (1993) Calmodulin mediates melatonin cytoskeletal effects. Experientia 49:635–641

    Article  CAS  PubMed  Google Scholar 

  • Benitez-King G, Hernandez ME, Tovar R, Ramirez G (2001) Melatonin activates PKC-alpha but not PKC-epsilon in N1E-115 cells. Neurochem Int 39:95–102

    Article  CAS  PubMed  Google Scholar 

  • Benitez-King G, Rios A, Martinez A, Anton-Tay F (1996) In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochim Biophys Acta 1290:191–196

    Article  PubMed  Google Scholar 

  • Bergmann M (1987) Photoperiod and testicular function in Phodopus sungorus. Adv Anat Embryol Cell Biol 105:1–76

    Article  CAS  PubMed  Google Scholar 

  • Bjelke B, Fuxe K (1993) Intraventricular beta-endorphin accumulates in DARPP-32 immunoreactive tanycytes. Neuroreport 5:265–268

    Article  CAS  PubMed  Google Scholar 

  • Boehnke K, Mirancea N, Pavesio A, Fusenig NE, Boukamp P, Stark HJ (2007) Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur J Cell Biol 86:731–746

    Article  CAS  PubMed  Google Scholar 

  • Brauksiepe B, Mujica AO, Herrmann H, Schmidt ER (2008) The Serine/threonine kinase Stk33 exhibits autophosphorylation and phosphorylates the intermediate filament protein Vimentin. BMC Biochem 9:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Brawer JR, Gustafson AW (1979) Changes in the fine structure of tanycytes during the annual reproductive cycle of the male little brown bat Myotis lucifugus lucifugus. Am J Anat 154:497–508

    Article  CAS  PubMed  Google Scholar 

  • Bruni JE, Montemurro DG, Clattenburg RE, Singh RP (1972) A scanning electron microscopic study of the ependymal surface of the third ventricle of the rabbit, rat, mouse and human brain. Anat Rec 174:407–420

    Article  CAS  PubMed  Google Scholar 

  • Flament-Durand J, Brion JP (1985) Tanycytes: morphology and functions: a review. Int Rev Cytol 96:121–155

    CAS  PubMed  Google Scholar 

  • Helfand BT, Chang L, Goldman RD (2004) Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 117:133–141

    Article  CAS  PubMed  Google Scholar 

  • Helfand BT, Chou YH, Shumaker DK, Goldman RD (2005) Intermediate filament proteins participate in signal transduction. Trends Cell Biol 15:568–570

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann K (1979) Photoperiod, pineal, melatonin and reproduction in hamsters. Prog Brain Res 52:397–415

    Article  CAS  PubMed  Google Scholar 

  • Horstmann E (1954) The fiber glia of selacean brain. Z Zellforsch Mikrosk Anat 39:588–617

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Arai Y, Nishimaki T (2003) Ultrastructural localization of vimentin immunoreactivity and gene expression in tanycytes and their alterations in hamsters kept under different photoperiods. Cell Tissue Res 314:251–262

    Article  CAS  PubMed  Google Scholar 

  • Kofler B, Bulleyment A, Humphries A, Carter DA (2002) Id-1 expression defines a subset of vimentin/S-100beta-positive, GFAP-negative astrocytes in the adult rat pineal gland. Histochem J 34:167–171

    Article  CAS  PubMed  Google Scholar 

  • Lechan RM, Fekete C (2007) Infundibular tanycytes as modulators of neuroendocrine function: hypothetical role in the regulation of the thyroid and gonadal axis. Acta Biomed 78(Suppl 1):84–98

    PubMed  Google Scholar 

  • Masson-Pevet M, George D, Kalsbeek A, Saboureau M, Lakhdar-Ghazal N, Pevet P (1994) An attempt to correlate brain areas containing melatonin-binding sites with rhythmic functions: a study in five hibernator species. Cell Tissue Res 278:97–106

    Article  CAS  PubMed  Google Scholar 

  • McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24:101–146

    Article  CAS  PubMed  Google Scholar 

  • Mujica AO, Brauksiepe B, Saaler-Reinhardt S, Reuss S, Schmidt ER (2005) Differential expression pattern of the novel serine/threonine kinase, STK33, in mice and men. FEBS J 272:4884–4898

    Article  CAS  PubMed  Google Scholar 

  • Ogawara M, Inagaki N, Tsujimura K, Takai Y, Sekimata M, Ha MH, Imajoh-Ohmi S, Hirai S, Ohno S, Sugiura H et al (1995) Differential targeting of protein kinase C and CaM kinase II signalings to vimentin. J Cell Biol 131:1055–1066

    Article  CAS  PubMed  Google Scholar 

  • Paramio JM, Jorcano JL (2002) Beyond structure: do intermediate filaments modulate cell signalling? Bioessays 24:836–844

    Article  CAS  PubMed  Google Scholar 

  • Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M (2005) Vimentin-dependent spatial translocation of an activated MAP Kinase in injured nerve. Neuron 45:715–726

    Article  CAS  PubMed  Google Scholar 

  • Peruzzo B, Pastor FE, Blazquez JL, Amat P, Rodriguez EM (2004) Polarized endocytosis and transcytosis in the hypothalamic tanycytes of the rat. Cell Tissue Res 317:147–164

    Article  CAS  PubMed  Google Scholar 

  • Peruzzo B, Pastor FE, Blazquez JL, Schobitz K, Pelaez B, Amat P, Rodriguez EM (2000) A second look at the barriers of the medial basal hypothalamus. Exp Brain Res 132:10–26

    Article  CAS  PubMed  Google Scholar 

  • Pilgrim C (1978) Transport function of hypothalamic tanycyte ependyma: how good is the evidence? Neuroscience 3:277–283

    Article  CAS  PubMed  Google Scholar 

  • Prevot V (2002) Glial-neuronal-endothelial interactions are involved in the control of GnRH secretion. J Neuroendocrinol 14:247–255

    Article  CAS  PubMed  Google Scholar 

  • Reuss S (2003) The clock in the brain: anatomy of the mammalian circadian timing system. In: Peschke E (ed) Endokrinologie—Zeitstrukturen endokriner Systeme, vol 60. Abhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. S. Hirzel, Stuttgart, pp 9–48

    Google Scholar 

  • Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez EM, Gonzalez CB, Delannoy L (1979) Cellular organization of the lateral and postinfundibular regions of the median eminence in the rat. Cell Tissue Res 201:377–408

    Article  CAS  PubMed  Google Scholar 

  • Soto-Vega E, Meza I, Ramirez-Rodriguez G, Benitez-King G (2004) Melatonin stimulates calmodulin phosphorylation by protein kinase C. J Pineal Res 37:98–106

    Article  CAS  PubMed  Google Scholar 

  • Vigh B, Vigh-Teichmann I (1998) Actual problems of the cerebrospinal fluid-contacting neurons. Microsc Res Tech 41:57–83

    Article  CAS  PubMed  Google Scholar 

  • Wittkowski W (1998) Tanycytes and pituicytes: morphological and functional aspects of neuroglial interaction. Microsc Res Tech 41:29–42

    Article  CAS  PubMed  Google Scholar 

  • Zoli M, Ferraguti F, Frasoldati A, Biagini G, Agnati LF (1995) Age-related alterations in tanycytes of the mediobasal hypothalamus of the male rat. Neurobiol Aging 16:77–83

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Dr. Rudolf Leube, who generously provided the vimentin antibodies. We also thank Dr. Alejandro Mujica for many helpful suggestions during the initial part of this study and Dipl.-Stat. H. Götte for advice on experimental design and statistical methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin R. Schmidt.

Additional information

Stefan Reuss and Erwin R. Schmidt are Joint Senior Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brauksiepe, B., Baumgarten, L., Reuss, S. et al. Co-localization of serine/threonine kinase 33 (Stk33) and vimentin in the hypothalamus. Cell Tissue Res 355, 189–199 (2014). https://doi.org/10.1007/s00441-013-1721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1721-8

Keywords

Navigation