Skip to main content
Log in

Calmodulin mediates melatonin cytoskeletal effects

  • Multi-Author Reviews
  • Melatonin and the Light-Dark Zeitgeber in Vertebrates, Invertebrates and Unicellular Organisms
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

In this article, we review the data concerning melatonin interactions with calmodulin. The kinetics of melatonin-calmodulin binding suggest that the hormone modulates cell activity through intracellular binding to the protein at physiological concentration ranges. Melatonin interaction with calmodulin may allow the hormone to modulate rhythmically many cellular functions. Melatonin's effect on tubulin polymerization, and cytoskeletal changes in MDCK and N1E-115 cells cultured with melatonin, suggest that at low concentrations (10−9 M) cytoskeletal effects are mediated by its antagonism to Ca2+-calmodulin. At higher concentrations (10−5 M), non-specific binding of melatonin to tubulin occurs thus overcoming the specific melatonin antagonism to Ca2+-calmodulin. Since the structures of melatonin and calmodulin are phylogenetically well preserved, calmodulin-melatonin interaction probably represents a major mechanism for regulation and synchronization of cell physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K. G., Robinson, A., Liddle, G. W., Butcher, R. W., Nicholson, W. E., and Baird, C. E., Role of cyclic AMP in mediating the effects of MSH, norepinephrine, and melatonin on frog skin color. Endocrinology85 (1969) 674–682.

    PubMed  Google Scholar 

  2. Aftab, D. T., Ballas, L. M., Loomis, C. R., and Hait, W. N., Structure activity relationships of phenothiazines and related drugs for inhibition of protein kinase C. Molec. Pharmac.40 (1991) 798–805.

    Google Scholar 

  3. Antón-Tay, F., and Wurtman, R. J., Regional uptake of3H-melatonin from blood or cerebrospinal fluid by rat brain. Nature, Lond.221 (1969) 474–475.

    Google Scholar 

  4. Antón-Tay, F., Diaz, J. L., and Férnandez-Guardiola, A., On the effect of melatonin upon human brains: Its possible therapeutic implications. Life Sci.10 (1971) 841–850.

    Google Scholar 

  5. Antón-Tay, F., Forray, C., and Ortega-Corona, B. G., Subneuronal fate of intracerebroventricular injected3H-Melatonin. J. Pineal Res.5 (1988) 125–133.

    PubMed  Google Scholar 

  6. Antón-Tay, F., Huerto-Delgadillo, L., Ortega-Corona, B. G., and Benítez-King, G., Melatonin antagonism to calmodulin may modulate multiple cellular functions, in: Melatonin and the Pineal Gland from Basic Science to Clinical Application, pp. 41–46. Eds Y. Touitou, J. Arendt and P. Pevet. Elsevier, Amsterdam 1993.

    Google Scholar 

  7. Appu Rao, A. G., and Cann, J. R., A comparative study of the interaction of chlorpromazine, trifluoperazine and promethazine with mouse brain tubulin. Molec. Pharmac.19 (1981) 295–301.

    Google Scholar 

  8. Arnold, J. D., Berger, A. E., Martin, D. C., Chemical agents effective in mediating control of growth and division synchrony ofPlasmodium berghei in pinealectomized mice. J. Parasit.55 (1969) 617–625.

    PubMed  Google Scholar 

  9. Babu, Y. S., Sack, J. S., Greenhough, T. V., Bugg, C. E., Means, A. R., and Cook, W. J., Three dimensional structure of calmodulin. Nature315 (1985) 37–40.

    PubMed  Google Scholar 

  10. Balzer, I., and Hardeland, R., Photoperiodism and effects of indoleamines in a unicellular alga,Gonyaulax polyedra. Science253 (1991) 795–797.

    PubMed  Google Scholar 

  11. Banerjee, S., Keer, V., Winston, M., Kelleher, K. J., and Margulis, L., Melatonin inhibitor of microtubule based oral morphogenesis inStentor coeruleus. J. Protozool.19 (1972) 108–113.

    PubMed  Google Scholar 

  12. Banerjee, S., and Margulis, L., Mitotic arrest by melatonin. Exp Cell Res.78 (1973) 314–318.

    PubMed  Google Scholar 

  13. Benítez-King, G., Cazares, F., and Meza, I., Synthesis and phosphorylation of cytoskeletal proteins during in vitro biogenesis of MDCK cell monolayers. J. Cell Sci.93 (1989) 53–61.

    PubMed  Google Scholar 

  14. Benítez-King, G., Huerto-Delgadillo, L., and Antón-Tay, F., Melatonin effects on the cytoskeletal organization of MDCK and neuroblastoma N1E-115 cells. J. Pineal Res.9 (1990) 209–220.

    PubMed  Google Scholar 

  15. Benítez-King, G., Huerto-Delgadillo, L., and Antón-Tay, F., Melatonin modifies calmodulin cell levels in MDCK and N1E-115 cell lines and inhibits phosphodiesterase activity in vitro. Brain Res.557 (1991) 289–292.

    PubMed  Google Scholar 

  16. Benítez-King, G., Huerto-Delgadillo, L., and Antón-Tay, F., Changes in calmodulin compartmentalization in MDCK cells induced by melatonin. Proc. Neurosci. Soc.17 (1991) 1193 Abstr. 473.19.

    Google Scholar 

  17. Benítez-King, G., Huerto-Delgadillo, L., Sámano-Coronel L., and Antón-Tay, F., Melatonin effects on cell growth and calmodulin synthesis in MDCK and N1E-115 cells. Adv. Pineal Res., in press.

  18. Benítez-King, G., Huerto-Delgadillo, L., and Antón-Tay, F., Binding of3H-melatonin to calmodulin. Life Sci.53 (1993) 201–207.

    PubMed  Google Scholar 

  19. Berkowitz, S. A., and Wolff, J., Intrinsic calcium sensitivity of tubulin polymerization. J. biol. Chem.256 (1981) 11216.

    PubMed  Google Scholar 

  20. Bubenik, G. A., Brown, G. M., Uhlir, I., and Grota, L. J., Immunohistological localization of N-acetylindole-alkylamines in pineal gland, retina and cerebellum. Brain Res.81 (1974) 233–242.

    PubMed  Google Scholar 

  21. Bubenik, G. A., Brown, G. M., and Grota, L. J., Immunohistological localization of melatonin in the rat digestive system. Experientia33 (1977) 662–663.

    PubMed  Google Scholar 

  22. Bubenik, G. A., Immunohistological localization of melatonin in the salivary gland of the rat, in: Advances in the Biosciences: Melatonin Current Status and Perspectives, vol. 29, pp. 391–395. Eds N. Birau and W. Schloot. Pergamon Press, Oxford, New York 1980.

    Google Scholar 

  23. Cardinali, D. P., Hyppa, M. T., and Wurtman, R. J., Fate of intracisternally injected melatonin in rat brain. Neuroendocrinology12 (1973) 30–40.

    PubMed  Google Scholar 

  24. Cardinali, D. P., Melatonin a mammalian pineal hormone. Endocr. Rev.2 (1981) 327–354.

    PubMed  Google Scholar 

  25. Cardinali, D. P., and Freire, F., Melatonin effects on brain. Interaction with microtubule protein, inhibition of fast axoplasmic flow and induction of crystaloid and tubular formation in the hypothalamus. Molec. Cell Endocrin.2 (1975) 317–330.

    Google Scholar 

  26. Cardinali, D. P., Vacas, M. I., and Boyer, E. E., Specific binding of melatonin in bovine brain. Endocrinology103 (1979) 437–441.

    Google Scholar 

  27. Cassone, V. M., Effects of melatonin on vertebrate circadian systems. Trends Neurosci.13 (1990) 457–463.

    PubMed  Google Scholar 

  28. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol.77 (1978) 853–880.

    PubMed  Google Scholar 

  29. Cereijido, M., Ehrenfeld, J., Fernandez-Castelo, S., and Meza, I., Fluxes, junctions, and blisters in cultured monolayers of epithelioid cells (MDCK). Ann. N.Y. Acad. Sci.372 (1981) 422–441

    PubMed  Google Scholar 

  30. Chávez, J. L., Antón-Tay, F., and Benítez-King, G., Melatonin binding to D2 receptors in rat striatum: A comparative study with calmodulin antagonists. Proc. West. Pharmac. Soc.34 (1991), 413–416.

    Google Scholar 

  31. Cheung, W. Y., Calmodulin plays a pivotal role in cellular regulation. Science207 (1980) 19–27.

    PubMed  Google Scholar 

  32. Cohen, M., Roselle, D., Chabner, B., Schmidt, T. J., and Lippman, M., Evidence for a cytoplasmic melatonin receptor. Nature274 (1978) 894–895.

    PubMed  Google Scholar 

  33. Cooper, D. M. F., Ahlijanian, and Perez-Reyes, E., Calmodulin plays a dominant role in determining neurotransmitter regulation of neuronal adenylate cyclase. J. Cell Biochem.36 (1988) 417–427.

    PubMed  Google Scholar 

  34. Fernández-Guardiola, A., and Antón-Tay, F., Modulation of subcortical inhibitory mechanisms by melatonin, in: Neurohumoral coding of brain function, pp. 121–135. Eds R. D. Myers and R. Drucker-Colin. Plenum Press, New York 1974.

    Google Scholar 

  35. Fitzgerald, T. J., and Veal, a., Melatonin antagonizes colchicine induced mitotic arrest. Experientia32 (1976) 372–373.

    PubMed  Google Scholar 

  36. Freire, F., and Cardinali, D. P., Effects of melatonin treatment and environmental lighting on the ultrastructural appearance. melatonin synthesis, norepinephrine turnover and microtubule protein content of the rat pineal gland. J. neural Transm.37 (1975) 237–257.

    PubMed  Google Scholar 

  37. Funan, H., The influence of certain hormones and chemicals on mammalian pigment cells. J. invest. Derm.46 (1966) 117–124.

    PubMed  Google Scholar 

  38. Gratzer, W. B., and Baines, A. J., Calmodulin and cytoskeletal function, in: Molecular Aspects of Cellular Regulation: Calmodulin, vol. 5, pp. 357–364. Eds P. Cohen and C. B. Klee. Elsevier, Amsterdam, New York, Oxford 1988.

    Google Scholar 

  39. Grundstrom, N., Karlsson, J. O. G., and Andersson, R. G. G., The control of granule movement in fish melanophores. Acta physiol. Scand.125 (1985) 415–421.

    PubMed  Google Scholar 

  40. Huang, C. Y., Chau, V., Chock, P. B., Wang, J. H., and Sharma, R. K., Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement of the binding of four Ca2+ to calmodulin for activation. Proc. natl Acad. Sci. USA78 (1981) 871–874.

    PubMed  Google Scholar 

  41. Jackson, W. T., Regulation of mitosis II. Interaction of isopropyl N-phenyl-carbamate and melatonin. J. Cell Sci.5 (1969) 745–755.

    PubMed  Google Scholar 

  42. Jacobs, J. R., and Stevens, J. K., Changes in the organization of the neuritic cytoskeleton during nerve growth factor-activated differentiation of PC-12 cells: a serial electron microscopy study of the development and control of neurite shape. J. Cell Biol.103 (1986) 895–906.

    PubMed  Google Scholar 

  43. Keith, C. H., Bajer, A. S., Ratan, R., Maxfield, F. R., and Shelanski, M. L., Calcium and calmodulin in the regulation of microtubular cytoskeleton. Ann. N.Y. Acad. Sci.466 (1986) 375–378.

    PubMed  Google Scholar 

  44. Klee, C. B., Concerted regulation of protein phosphorylation dephosphorylation by calmodulin. Neurochem. Res.16 (1991) 1059–1065.

    PubMed  Google Scholar 

  45. Kopin, I. J., Pare, C. M., Axelrod, J., and Weissbach, H., The fate of melatonin in animals. J. biol. Chem.236 (1961) 3072–3075.

    PubMed  Google Scholar 

  46. Krause, D. N., and Dubocovich, M. L., Melatonin receptors. A. Rev. Pharmac. Toxic.31 (1991) 549–568.

    Google Scholar 

  47. Kumagi, H. E., Nishida, E., Kotani, S., and Sakai, H., On the mechanism of calmodulin-induced inhibition of microtubule assembly in vitro. J. Biochem.99 (1986) 521–525.

    PubMed  Google Scholar 

  48. Lee, Y. C., and Wolff, J., The calmodulin binding domain on microtubule associated protein 2. J. biol. Chem.259 (1984) 8041–8043.

    PubMed  Google Scholar 

  49. Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., and Mori, W., Isolation of melatonin, the pineal gland factor that lightness melanocytes. J. Am. Chem. Soc.80 (1958) 2587.

    Google Scholar 

  50. Levin, R. M., and Weiss, B., Binding of trifluoperazine to the calcium dependent activator of cyclic nucleotide phosphodiesterase. Molec. Pharmac.13 (1977) 690–697.

    Google Scholar 

  51. Letorneau, P. C., Nerve fiber growth and its regulation by extrinsic factors, in: Neuronal Development pp. 213–254. Eds N. C. Spitzer. Plenum Publishing, New York 1982.

    Google Scholar 

  52. Lissoni, P., Barni, S., Tancini, G., Crispino, S., Paolorosi, F., Lucini, V., Mariani, M., Cattaneo, G., Esposti, D., Esposti, G., and Fraschini, F., Clinical study of melatonin in untreatable advanced cancer patients. Tumori73 (1987) 475–480.

    PubMed  Google Scholar 

  53. Malawista, S. E., The effects of colchicine and cytochalasin B on the hormone-induced movement of melanin granules in frog dermal melanocytes, in: Endocrinology, p. 288, Eds R. O. Scow, F. J. G. Ebling and I. W. Henderson. Excerpta Amsterdam 1973.

  54. Malawista, S. E., Microtubules and the movement of melanin granules in frog dermal melanocytes. Ann. N.Y. Acad. Sci.253 (1975) 702–710.

    PubMed  Google Scholar 

  55. Meza, I., Ibarra, G., Sabanero, M., Martínez-Palomo, A., and Cereijido, M., Occluding junctions and cytoskeletal components in cultured transporting epithelium. J. Cell Biol.87 (1980) 746–754.

    PubMed  Google Scholar 

  56. Messenger, E. A., and Warner, A. E., The action of melatonin on single amphibian pigment cells in tissue culture. Br. J. Pharmac.61 (1977) 607–614.

    Google Scholar 

  57. Moore, R. Y., Organization and function of a Central Nervous System circadian oscillator. Fedn Proc.42 (1983) 2783–2789.

    Google Scholar 

  58. Morgan, P. F., Patel, J., and Marangos, P. J., Characterization of [3H]RO 5-4864 binding to calmodulin using a rapid ultrafiltration technique. Biochem. Pharmac.36 (1987) 4257–4262.

    Google Scholar 

  59. Niles, L. P., Wong, Y. W., Mishra, R. K., and Brown, G. M., Melatonin receptors in brain. Eur. J. Pharmac.55 (1979) 219–221.

    Google Scholar 

  60. Ortega, A., López, I., Benítez-King, G., and Antón-Tay, F., Melatonin increases calmodulin mRNA levels in MDCK and N1E-115 cell lines. 1st Locarno International Meeting on Neuroendocrinoimmunology. The Pineal Gland in Relation with the Immune System and Cancer. (1993) Abstr. p. 65.

  61. Pang, S. F., and Yew, D. T., Pigment aggregation by melatonin in the retinal pigment epithelium and choroid of guineapigs,Cavia porcellus. Experientia35 (1978) 231–233.

    Google Scholar 

  62. Perrino, B. A., and Chou, I. N., Calmodulin modulation of adverse effects of Cd2+ on microtubules and tubulin polymerization in vitro. In vitro3 (1989) 227–234.

    Google Scholar 

  63. Pheng, L., and Lagnado, J. R., Effects of indole alkaloids and related compounds on the properties of brain microtubular protein. Biochem. Soc. Trans.3 (1975) 121–124.

    PubMed  Google Scholar 

  64. Pierpaoli, W., and Maestroni, G. J. N., Melatonin: A principal neuroimmunoregulatory and anti-stress hormone: its antiageing effects. Immuno. Lett.16 (1987) 355.

    Google Scholar 

  65. Piezzi, R. S., and Cavicchia, J. C., Effects of cold and melatonin on the microtubules of the toad sciatic nerve. Anat. Rec.200 (1981) 115–120.

    PubMed  Google Scholar 

  66. Poffenbarger, M., and Fuller, G. M., Is melatonin a microtubule inhibitor? Expl Cell Res.103 (1976) 135–141.

    Google Scholar 

  67. Ramussen, C. D., and Means, A. R., Calmodulin is required for cell progression during G1 and mitosis. EMBO J.8 (1989) 73–82.

    PubMed  Google Scholar 

  68. Reed, B. L., Finnin, B. C., and Ruffin, N. E., The effect of melatonin and epinephrine on the melanophores of freshwater teleosts. Life Sci.8 (1969) 113–120.

    Google Scholar 

  69. Rosenthal, N. E., Sack, D. A., Jacobsen, F. M., James, S. P., Parry, B. L., Arendt, J., Tamarkin, L., and Wehr, T. A., Melatonin in seasonal affective disorder and phototherapy. J. neural Transm. [suppl]21 (1986) 257–268.

    Google Scholar 

  70. Salter, R. S., Krincks, M. H., Klee, C. B., and Neer, E. J., Calmodulin activates the isolated catalytic unit of brain adenylate cyclase. J. biol. Chem.256 (1981) 9830–9833.

    PubMed  Google Scholar 

  71. Seeman, P., Brain dopamine receptors. Pharmac. Rev.32 (1980) 229–313.

    Google Scholar 

  72. Sharma, R. K., and Wang, J. H., Regulation of cAMP concentration by calmodulin-dependent cyclic nucleotide phosphodiesterase. Biochem. cell. Biol.64 (1986) 1072–1080.

    PubMed  Google Scholar 

  73. Snider, R. M., Forray, C., Pfenning, M., and Richelson, E., Neurotensin stimulates inositol phospholipid metabolism and calcium mobilization in murine neuroblastoma clone N1E-115. J. Neurochem.47 (1986) 1214–1218.

    PubMed  Google Scholar 

  74. Stankov, B., Fraschini, F., and Reiter, R. J., Melatonin binding sites in the central nervous system. Brain. Res. Rev.16 (1991) 245–246.

    PubMed  Google Scholar 

  75. Stoclet, J. C., Gerard, D., Kilhoffer, M. C., Lugnier, C., Miller, R., and Schaeffer, P., Calmodulin and its role in intracellular calcium regulation. Prog. Neurobiol.29 (1987) 321–364.

    PubMed  Google Scholar 

  76. Tanaka, T., and Hidaka, H., Hydrophobic regions function in calmodulin enzyme(s) interactions. J. biol. Chem.255 (1980) 11078–11080.

    PubMed  Google Scholar 

  77. Tanaka, T., Inagaki, M., and Hidaka, H., Hydrophobic interaction of the Ca2++-calmodulin complex with calmodulin antagonists. Naphthalensulfonamide derivatives. Molec. Pharmac.22 (1983) 403–407.

    Google Scholar 

  78. Winston, M., Jhonson, E., Kelleher, J. K., Banerjee, S., and Margulis, L., Melatonin: cellular effects on live, stentors correlated with the inhibition of colchicine-binding to microtubule protein. Cytobios9 (1974) 237–243.

    PubMed  Google Scholar 

  79. Wurtman, R. J., Axelrod, J., and Phillips, L. S., The uptake of3H-Melatonin in endocrine and nervous tissues and the effects of constant light exposure. J. Pharmac. exp. Ther.143 (1964) 314–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benítez-King, G., Antón-Tay, F. Calmodulin mediates melatonin cytoskeletal effects. Experientia 49, 635–641 (1993). https://doi.org/10.1007/BF01923944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923944

Key words

Navigation