Skip to main content
Log in

Granzyme B-dependent and perforin-independent DNA fragmentation in intestinal epithelial cells induced by anti-CD3 mAb-activated intra-epithelial lymphocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We previously found that an i.p. injection of anti-CD3 monoclonal antibody (mAb) into mice caused DNA fragmentation in the intestinal villous epithelial cells (IVECs) of the duodenum and the jejunum. In this study, in order to elucidate the mechanism of DNA fragmentation in IVECs, we searched for the inducer(s) of DNA fragmentation by using immunohistochemistry. The release of cytoplasmic granules from intraepithelial lymphocytes (IELs) and the formation of large gaps between IELs and IVECs were observed electron microscopically after antibody administration. The presence and distribution pattern of Granzyme B (GrB), a serine protease in cytolytic granules present in cytotoxic T lymphocytes and natural killer cells and considered to be the responsible molecule for DNA fragmentation in target cells, was examined in detail in intestinal villi by immunohistology. GrB was detected in cytoplasmic granules in nearly all IELs. The time-kinetics of granule release from IELs after mAb injection coincided not only with that of the extracellular diffusion of GrB, but also with that of DNA fragmentation in IVECs. On the other hand, perforin (Pfn), assumed to cooperate with GrB in DNA fragmentation, could not be detected in IELs, and its release was not confirmed after the anti-CD3 mAb injection. Anti-CD3 mAb injection also induced DNA fragmentation in IVECs in Pfn-knockout mice. These results support the notion that DNA fragmentation in IVECs by the stimulated IELs in the present study is induced by a mechanism involving GrB, but independent of Pfn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asarnow DM, Kuziel WA, Bonyhadi M, Tigelaar RE, Tucker PW, Allison JP (1988) Limited diversity of gamma delta antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55:837–847

    Article  PubMed  CAS  Google Scholar 

  • Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2:401–409

    PubMed  CAS  Google Scholar 

  • Beagley KW, Husband AJ (1998) Intraepithelial lymphocytes: origins, distribution, and function. Crit Rev Immunol 18:237–254

    Article  PubMed  CAS  Google Scholar 

  • Beagley KW, Fujihashi K, Lagoo AS, Lagoo-Deenadaylan S, Black CA, Murray AM, Sharmanov AT, Yamamoto M, McGhee JR, Elson CO et al (1995) Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. J Immunol 154:5611–5619

    PubMed  CAS  Google Scholar 

  • Burnett TG, Hunt JS (2000) Nitric oxide synthase-2 and expression of perforin in uterine NK cells. J Immunol 164:5245–5250

    PubMed  CAS  Google Scholar 

  • Chamberlain CM, Ang LS, Boivin WA, Cooper DM, Williams SJ, Zhao H, Hendel A, Folkesson M, Swedenborg J, Allard MF, McManus BM, Granville DJ (2010) Perforin-independent extracellular granzyme B activity contributes to abdominal aortic aneurysm. Am J Pathol 176:1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Chen ZW (2002) Comparative biology of gamma delta T cells. Sci Prog 85:347–358

    Article  PubMed  Google Scholar 

  • Choy JC, Hung VH, Hunter AL, Cheung PK, Motyka B, Goping IS, Sawchuk T, Bleackley RC, Podor TJ, McManus BM, Granville DJ (2004) Granzyme B induces smooth muscle cell apoptosis in the absence of perforin: involvement of extracellular matrix degradation. Arterioscler Thromb Vasc Biol 24:2245–2250

    Article  PubMed  CAS  Google Scholar 

  • Choy JC, Cruz RP, Kerjner A, Geisbrecht J, Sawchuk T, Fraser SA, Hudig D, Bleackley RC, Jirik FR, McManus BM, Granville DJ (2005) Granzyme B induces endothelial cell apoptosis and contributes to the development of transplant vascular disease. Am J Transplant 5:494–499

    Article  PubMed  CAS  Google Scholar 

  • Dressel R, Raja SM, Honing S, Seidler T, Froelich CJ, von Figura K, Gunther E (2004) Granzyme-mediated cytotoxicity does not involve the mannose 6-phosphate receptors on target cells. J Biol Chem 279:20200–20210

    Article  PubMed  CAS  Google Scholar 

  • Fehniger TA, Cai SF, Cao X, Bredemeyer AJ, Presti RM, French AR, Ley TJ (2007) Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26:798–811

    Article  PubMed  CAS  Google Scholar 

  • Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B, Shah GM, Bleackley RC, Dixit VM, Hanna W (1996) New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271:29073–29079

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  • Guerriero JL, Ditsworth D, Catanzaro JM, Sabino G, Furie MB, Kew RR, Crawford HC, Zong WX (2011) DNA alkylating therapy induces tumor regression through an HMGB1-mediated activation of innate immunity. J Immunol 186:3517–3526

    Article  PubMed  CAS  Google Scholar 

  • Haas W, Pereira P, Tonegawa S (1993) Gamma/delta cells. Annu Rev Immunol 11:637–685

    Article  PubMed  CAS  Google Scholar 

  • Hayday AC (2000) [Gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    Article  PubMed  CAS  Google Scholar 

  • Hayday A, Theodoridis E, Ramsburg E, Shires J (2001) Intraepithelial lymphocytes: exploring the third way in immunology. Nat Immunol 2:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Hu D, Cross JC (2011) Ablation of Tpbpa-positive trophoblast precursors leads to defects in maternal spiral artery remodeling in the mouse placenta. Dev Biol 358:231–239

    Article  PubMed  CAS  Google Scholar 

  • Imanguli MM, Swaim WD, League SC, Gress RE, Pavletic SZ, Hakim FT (2009) Increased T-bet+ cytotoxic effectors and type I interferon-mediated processes in chronic graft-versus-host disease of the oral mucosa. Blood 113:3620–3630

    Article  PubMed  CAS  Google Scholar 

  • Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, Benjamin JL, Ruhn KA, Hou B, DeFranco AL, Yarovinsky F, Hooper LV (2011) Gamma delta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci USA 108:8743–8748

    Article  PubMed  CAS  Google Scholar 

  • Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37

    Article  PubMed  CAS  Google Scholar 

  • King A, Wooding P, Gardner L, Loke YW (1993) Expression of perforin, Granzyme A and TIA-1 by human uterine CD56+ NK cells implies they are activated and capable of effector functions. Hum Reprod 8:2061–2067

    PubMed  CAS  Google Scholar 

  • Kiyono H, Fukuyama S (2004) NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4:699–710

    Article  PubMed  CAS  Google Scholar 

  • Kuhla A, Eipel C, Abshagen K, Siebert N, Menger MD, Vollmar B (2009) Role of the perforin/granzyme cell death pathway in D-Gal/LPS-induced inflammatory liver injury. Am J Physiol Gastrointest Liver Physiol 296:G1069–G1076

    Article  PubMed  CAS  Google Scholar 

  • Kusakabe K, Okada T, Sasaki F, Kiso Y (1999) Cell death of uterine natural killer cells in murine placenta during placentation and preterm periods. J Vet Med Sci 61:1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Bar-Haim E, Machlenkin A, Goldberger O, Volovitz I, Vadai E, Tzehoval E, Eisenbach L (2004) In vivo rejection of tumor cells dependent on CD8 cells that kill independently of perforin and FasL. Cancer Gene Ther 11:237–248

    Article  PubMed  CAS  Google Scholar 

  • Lefrancois L (1991) Extrathymic differentiation of intraepithelial lymphocytes: generation of a separate and unequal T-cell repertoire? Immunol Today 12:436–438

    Article  PubMed  CAS  Google Scholar 

  • Liu CC, Walsh CM, Eto N, Clark WR, Young JD (1995) Morphologic and functional characterization of perforin-deficient lymphokine-activated killer cells. J Immunol 155:602–608

    PubMed  CAS  Google Scholar 

  • Lowin B, Hahne M, Mattmann C, Tschopp J (1994) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370:650–652

    Article  PubMed  CAS  Google Scholar 

  • MacDonald TT, Spencer J (1988) Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J Exp Med 167:1341–1349

    Article  PubMed  CAS  Google Scholar 

  • MacDonald TT, Spencer J (1990) Gut immunology. Baillieres Clin Gastroenterol 4:291–313

    Article  PubMed  CAS  Google Scholar 

  • Moreto M, Perez-Bosque A (2009) Dietary plasma proteins, the intestinal immune system, and the barrier functions of the intestinal mucosa. J Anim Sci 87:E92–E100

    Article  PubMed  CAS  Google Scholar 

  • Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for Granzyme B during cytotoxic T cell-induced apoptosis. Cell 103:491–500

    Article  PubMed  CAS  Google Scholar 

  • Mueller C, Macpherson AJ (2006) Layers of mutualism with commensal bacteria protect us from intestinal inflammation. Gut 55:276–284

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Buhler-Jungo M, Mueller C (2000) Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection. J Immunol 164:1986–1994

    PubMed  CAS  Google Scholar 

  • Nakamura M, Yagi H, Kayaba S, Ishii T, Ohtsu S, Gotoh T, Itoh T (1995) Most thymocytes die in the absence of DNA fragmentation. Arch Histol Cytol 58:249–256

    Article  PubMed  CAS  Google Scholar 

  • Nakashima A, Shiozaki A, Myojo S, Ito M, Tatematsu M, Sakai M, Takamori Y, Ogawa K, Nagata K, Saito S (2008) Granulysin produced by uterine natural killer cells induces apoptosis of extravillous trophoblasts in spontaneous abortion. Am J Pathol 173:653–664

    Article  PubMed  CAS  Google Scholar 

  • Nanno M, Matsumoto S, Koike R, Miyasaka M, Kawaguchi M, Masuda T, Miyawaki S, Cai Z, Shimamura T, Fujiura Y et al (1994) Development of intestinal intraepithelial T lymphocytes is independent of Peyer’s patches and lymph nodes in aly mutant mice. J Immunol 153:2014–2020

    PubMed  CAS  Google Scholar 

  • Ogata M, Oomori T, Soga H, Ota Y, Itoh A, Matsutani T, Nanno M, Suzuki R, Itoh T (2009) DNA repair after DNA fragmentation in mouse small intestinal epithelial cells. Cell Tissue Res 335:371–382

    Article  PubMed  CAS  Google Scholar 

  • Ojcius DM, Zheng LM, Sphicas EC, Zychlinsky A, Young JD (1991) Subcellular localization of perforin and serine esterase in lymphokine-activated killer cells and cytotoxic T cells by immunogold labeling. J Immunol 146:4427–4432

    PubMed  CAS  Google Scholar 

  • Parr EL, Young LH, Parr MB, Young JD (1990) Granulated metrial gland cells of pregnant mouse uterus are natural killer-like cells that contain perforin and serine esterases. J Immunol 145:2365–2372

    PubMed  CAS  Google Scholar 

  • Roberts SJ, Smith AL, West AB, Wen L, Findly RC, Owen MJ, Hayday AC (1996) T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 93:11774–11779

    Article  PubMed  CAS  Google Scholar 

  • Rocha B, Vassalli P, Guy-Grand D (1994) Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J Exp Med 180:681–686

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH (1997) Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med 185:855–866

    Article  PubMed  CAS  Google Scholar 

  • Shiohara T, Moriya N, Hayakawa J, Arahari K, Yagita H, Nagashima M, Ishikawa H (1993) Bone marrow-derived dendritic epidermal T cells express T cell receptor-alpha beta/CD3 and CD8. Evidence for their extrathymic maturation. J Immunol 150:4323–4330

    PubMed  CAS  Google Scholar 

  • Suzuki H, Jeong KI, Doi K (2001) Regional variations in the distributions of small intestinal intraepithelial lymphocytes (IELs) in BALB/c +/+, nu/+, and nu/nu mice. Comp Med 51:127–133

    PubMed  CAS  Google Scholar 

  • Tamura A, Soga H, Yaguchi K, Yamagishi M, Toyota T, Sato J, Oka Y, Itoh T (2003) Distribution of two types of lymphocytes (intraepithelial and lamina-propria-associated) in the murine small intestine. Cell Tissue Res 313:47–53

    Article  PubMed  Google Scholar 

  • Tayade C, Fang Y, Black GP, Paffaro VA Jr, Erlebacher A, Croy BA (2005) Differential transcription of eomes and T-bet during maturation of mouse uterine natural killer cells. J Leukoc Biol 78:1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Thompson-Chagoyan OC, Maldonado J, Gil A (2005) Aetiology of inflammatory bowel disease (IBD): role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr 24:339–352

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA (2012) Granzymes, cytotoxic granules and cell death: the early work of Dr. Jurg Tschopp. Cell Death Differ 19:21–27

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA, Davis J, Sutton VR, Smyth MJ (2000) Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Curr Opin Immunol 12:323–329

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider I, Groscurth P (1991) Ultrastructure of cell mediated cytotoxicity. Electron Microsc Rev 4:249–267

    Article  PubMed  CAS  Google Scholar 

  • Wei S, Gamero AM, Liu JH, Daulton AA, Valkov NI, Trapani JA, Larner AC, Weber MJ, Djeu JY (1998) Control of lytic function by mitogen-activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line: identification of perforin and Granzyme B mobilization by functional ERK2. J Exp Med 187:1753–1765

    Article  PubMed  CAS  Google Scholar 

  • Yaguchi K, Kayaba S, Soga H, Yamagishi M, Tamura A, Kasahara S, Ohara S, Satoh J, Oka Y, Toyota T, Itoh T (2004) DNA fragmentation and detachment of enterocytes induced by anti-CD3 mAb-activated intraepithelial lymphocytes. Cell Tissue Res 315:71–84

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Shimada S, Kato-Nagaoka N, Soga H, Itoh T, Nanno M (2005) Accumulation of intestinal intraepithelial lymphocytes in association with lack of polymeric immunoglobulin receptor. Eur J Immunol 35:1211–1219

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ogata.

Additional information

This work was in part supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (20590181 to M.O. and 21590207 to T.I.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogata, M., Ota, Y., Matsutani, T. et al. Granzyme B-dependent and perforin-independent DNA fragmentation in intestinal epithelial cells induced by anti-CD3 mAb-activated intra-epithelial lymphocytes. Cell Tissue Res 352, 287–300 (2013). https://doi.org/10.1007/s00441-012-1549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1549-7

Keywords

Navigation