Skip to main content

Advertisement

Log in

DNA repair after DNA fragmentation in mouse small intestinal epithelial cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In our earlier work, we found that, in mice, i.p. injection of anti-CD3 monoclonal antibody activated intraepithelial lymphocytes (iIEL), leading to DNA fragmentation in villous epithelial cells of the duodenum and jejunum within 30 min. By 2 h after injection, nearly half of the enterocytes had detached from the villi, and DNA fragmentation could barely be detected in the remaining villous epithelium. We hypothesized that DNA had been repaired in enterocytes in which DNA fragmentation had previously been induced. In this study, enterocytes became negative for TUNEL staining at 60 min after anti-CD3 treatment, prior to detachment. The remaining villous epithelial cells, after DNA fragmentation and detachment, were found to be positive for 5-bromo-2-deoxyuridine labeling. To confirm whether fragmented DNA had been repaired in situ, we investigated the appearance and/or mobilization of DNA-repair-related proteins. Focus formation, a typical staining pattern of repair-related proteins including phosphorylated H2AX, phospo-ATM substrate, and Nbs1, was observed 30 min after anti-CD3 injection, with the kinetics virtually identical to that of DNA fragmentation. The co-localization of γ-H2AX and phospo-ATM substrate was also confirmed. The disappearance of a positive reaction for TUNEL staining in previously fragmented DNA, the appearance of representative DNA-repair-related proteins, the coincidence of the kinetics of DNA fragmentation and this appearance of DNA-repair-related proteins, and the co-localization of two of the repair-related proteins strongly indicated that enterocyte DNA could be repaired after it had been fragmented in vivo. Thus, DNA fragmentation per se may not necessarily be an immediate sign of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G (2001) Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem 276:38224–38230

    PubMed  CAS  Google Scholar 

  • Angele S, Jones C, Reis Filho JS, Fulford LG, Treilleux I, Lakhani SR, Hall J (2004) Expression of ATM, p53, and the MRE11-Rad50-NBS1 complex in myoepithelial cells from benign and malignant proliferations of the breast. J Clin Pathol 57:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Assenmacher N, Hopfner KP (2004) MRE11/RAD50/NBS1: complex activities. Chromosoma 113:157–166

    Article  PubMed  CAS  Google Scholar 

  • Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605–611

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Allis CD, Nussenzweig A (2004) Phosphorylation of histone H2B at DNA double-strand breaks. J Exp Med 199:1671–1677

    Article  PubMed  CAS  Google Scholar 

  • Frank-Vaillant M, Marcand S (2002) Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. Mol Cell 10:1189–1199

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  • Haas W, Pereira P, Tonegawa S (1993) Gamma/delta cells. Annu Rev Immunol 11:637–685

    PubMed  CAS  Google Scholar 

  • Hamer G, Roepers-Gajadien HL, Duyn-Goedhart A van, Gademan IS, Kal HB, Buul PP van, Rooij DG de (2003) DNA double-strand breaks and gamma-H2AX signaling in the testis. Biol Reprod 68:628–634

    Article  PubMed  CAS  Google Scholar 

  • Hayday AC (2000) [Gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    Article  PubMed  CAS  Google Scholar 

  • Hayday A, Theodoridis E, Ramsburg E, Shires J (2001) Intraepithelial lymphocytes: exploring the third way in immunology. Nat Immunol 2:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W, Tonegawa S (1990) Homing of a γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 343:754–757

    Article  PubMed  CAS  Google Scholar 

  • Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  PubMed  CAS  Google Scholar 

  • Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  PubMed  CAS  Google Scholar 

  • Lambert WC, Kuo HR, Lambert MW (1995) Xeroderma pigmentosum. Dermatol Clin 13:169–209

    PubMed  CAS  Google Scholar 

  • Lammens M, Hiel JA, Gabreels FJ, Engelen BG van, Heuvel LP van den, Weemaes CM (2003) Nijmegen breakage syndrome: a neuropathological study. Neuropediatrics 34:189–193

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304:93–96

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551–554

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Paull TT (2006) Purification and biochemical characterization of ataxia-telangiectasia mutated and Mre11/Rad50/Nbs1. Methods Enzymol 408:529–539

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Paull TT (2007) Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26:7741–7748

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Sedelnikova OA, Redon C, Pilch DR, Sinogeeva NI, Shroff R, Lichten M, Bonner WM (2006) Techniques for gamma-H2AX detection. Methods Enzymol 409:236–250

    Article  PubMed  CAS  Google Scholar 

  • Nanno M, Matsumoto S, Koike R, Miyasaka M, Kawaguchi M, Masuda T, Miyawaki S, Cai Z, Shimamura T, Fujiura Y, Ishikawa H (1994) Development of intestinal intraepithelial T lymphocytes is independent of Peyer's patches and lymph nodes in aly mutant mice. J Immunol 153:2014–2020

    PubMed  CAS  Google Scholar 

  • Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  • Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003) Characteristics of gamma-H2AX foci at DNA double-strand break sites. Biochem Cell Biol 81:123–129

    Article  PubMed  CAS  Google Scholar 

  • Porcedda P, Turinetto V, Lantelme E, Fontanella E, Chrzanowska K, Ragona R, De Marchi M, Delia D, Giachino C (2006) Impaired elimination of DNA double-strand break-containing lymphocytes in ataxia telangiectasia and Nijmegen breakage syndrome. DNA Repair (Amst) 5:904–913

    Article  CAS  Google Scholar 

  • Rapp A, Greulich KO (2004) After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available. J Cell Sci 117:4935–4945

    Article  PubMed  CAS  Google Scholar 

  • Richardson C, Jasin M (2000) Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol Cell Biol 20:9068–9075

    Article  PubMed  CAS  Google Scholar 

  • Ritter MA, Cleaver JE, Tobias CA (1977) High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature 266:653–655

    Article  PubMed  CAS  Google Scholar 

  • Roberts SJ, Smith AL, West AB, Wen L, Findly RC, Owen MJ, Hayday AC (1996) T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 93:11774–11779

    Article  PubMed  CAS  Google Scholar 

  • Rocha B, Vassalli P, Guy-Grand D (1994) Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J Exp Med 180:681–686

    Article  PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  PubMed  CAS  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    Article  PubMed  CAS  Google Scholar 

  • Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100:5057–5062

    Article  PubMed  CAS  Google Scholar 

  • Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D, Lopez BS (2001) Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 20:3861–3870

    Article  PubMed  CAS  Google Scholar 

  • Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Tanaka K, Hanaoka F (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121:387–400

    Article  PubMed  CAS  Google Scholar 

  • Tamura A, Soga H, Yaguchi K, Yamagishi M, Toyota T, Sato J, Oka Y, Itoh T (2003) Distribution of two types of lymphocytes (intraepithelial and lamina-propria-associated) in the murine small intestine. Cell Tissue Res 313:47–53

    Article  PubMed  Google Scholar 

  • Tang X, Hui ZG, Cui XL, Garg R, Kastan MB, Xu B (2008) A novel ATM-dependent pathway regulates protein phosphatase 1 in response to DNA damage. Mol Cell Biol 28:2559–2566

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Klein JR (1994) Thymus-neuroendocrine interactions in extrathymic T cell development. Science 265:1860–1862

    Article  PubMed  CAS  Google Scholar 

  • Yaguchi K, Kayaba S, Soga H, Yamagishi M, Tamura A, Kasahara S, Ohara S, Satoh J, Oka Y, Toyota T, Itoh T (2004) DNA fragmentation and detachment of enterocytes induced by anti-CD3 mAb-activated intraepithelial lymphocytes. Cell Tissue Res 315:71–84

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ogata.

Additional information

This work was supported in part by a Grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (16590132 to T.M., 16390045 to T.I., and 20590181 to M.O.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogata, M., Oomori, T., Soga, H. et al. DNA repair after DNA fragmentation in mouse small intestinal epithelial cells. Cell Tissue Res 335, 371–382 (2009). https://doi.org/10.1007/s00441-008-0727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0727-0

Keywords

Navigation