Skip to main content

Advertisement

Log in

DNA fragmentation and detachment of enterocytes induced by anti-CD3 mAb-activated intraepithelial lymphocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

To elucidate the role of intraepithelial lymphocytes (IEL) and enterocytes in the defense mechanism of the small intestine, we designed experiments to stimulate the IEL by anti-CD3ε, anti-TCRαβ, or anti-TCRγδ monoclonal antibodies (mAbs), and to examine the subsequent changes to the enterocytes. The enterocytes of the duodenum and jejunum, but not of the ileum, showed massive DNA fragmentation 30 min after intraperitoneal injection of anti-CD3 mAb. These responses were also induced by anti-TCRγδ mAb, but not by anti-TCRαβ mAb, and were completely inhibited by cyclosporin A. Nearly half of the enterocytes of the villi in the duodenum and jejunum were exfoliated into the lumen 4 h after the injection of the mAb. Administration of anti-CD3 mAb also induced DNA fragmentation in Fas-deficient MRL/lpr mice, indicating that the Fas-Fas ligand system was not involved in these events. The anti-CD3 mAb treatment also induced massive DNA fragmentation in the intestinal epithelium of the duodenum and jejunum in TNF-receptor-1-deficient mice, whereas TNF-α induced only the detachment of intestinal epithelium of wild-type mice, implying the dissociation of two independent factors and/or mechanisms for DNA fragmentation and the subsequent epithelial cell detachment in the murine duodenum and jejunum. The mAb failed to exfoliate the epithelium in TNF-R1-deficient mice. Thus, TCRγδ+ IEL, when treated with anti-CD3 or anti-TCRγδ mAbs, induced rapid DNA fragmentation and subsequent detachment of the duodenal and jejunal epithelia, but not in the ileum (“the silent ileum”), partly because of the paucity of TCRγδ+ IELs in the ileum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2A–F
Fig. 3A–C
Fig. 4
Fig. 5A–I
Fig. 6A, B
Fig. 7A–F
Fig. 8A–C
Fig. 9A–F
Fig. 10A–C
Fig. 11

Similar content being viewed by others

References

  • Arai T, Kida Y, Harmon BV, Gobe GC (1996) Expression and localization of clusterin mRNA in the small and large intestine of the irradiated rat: its relationship with apoptosis. Int J Radiat Biol 69:547–553

    CAS  PubMed  Google Scholar 

  • Asarnow DM, Kuziel WA, Bonyhadi M, Tigelaar RE, Tucker PW, Allison JP (1988) Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55:837–847

    CAS  PubMed  Google Scholar 

  • Baker MB, Altman NH, Podack ER, Levy RB (1996) The role of cell-mediated cytotoxicity in acute GVHD after MHC-matched allogeneic bone marrow transplantation in mice. J Exp Med 183:2645–2656

    CAS  PubMed  Google Scholar 

  • Beagley KW, Fujihashi K, Lagoo AS, Lagoo-Deenadaylan S, Black CA, Murray AM, Sharmanov AT, Yamamoto M, McGhee JR, Elson CO, Kiyono H (1995) Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. J Immunol 154:5611–5619

    CAS  PubMed  Google Scholar 

  • Corazza N, Muller S, Brunner T, Kagi D, Mueller C (2000) Differential contribution of Fas- and perforin-mediated mechanisms to the cell-mediated cytotoxic activity of naive and in vivo-primed intestinal intraepithelial lymphocytes. J Immunol 164:398–403

    CAS  PubMed  Google Scholar 

  • Garside P, Bunce C, Tomlinson RC, Nichols BL, Mowat AM (1993) Analysis of enteropathy induced by tumour necrosis factor alpha. Cytokine 5:24–30

    CAS  PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    CAS  PubMed  Google Scholar 

  • Greenstein RJ (1993) Age, as well as cell turnover kinetics, regulates brain/gut repair. Mech Ageing Dev 69:219–231

    CAS  PubMed  Google Scholar 

  • Guy-Grand D, DiSanto JP, Henchoz P, Malassis-Seris M, Vassalli P (1998) Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-gamma, TNF) in the induction of epithelial cell death and renewal. Eur J Immunol 28:730–744

    Google Scholar 

  • Haas W, Pereira P, Tonegawa S (1993) Gamma/delta cells. Annu Rev Immunol 11:637–685

    Article  CAS  PubMed  Google Scholar 

  • Hall PA, Coates PJ, Ansari B, Hopwood D (1994) Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107:3569–3577

    PubMed  Google Scholar 

  • Hayday AC (2000) Gamma/delta cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    CAS  PubMed  Google Scholar 

  • Hayday A, Theodoridis E, Ramsburg E, Shires J (2001) Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol 2:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Hermiston ML, Gordon JI (1995) In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J Cell Biol 129:489–506

    CAS  PubMed  Google Scholar 

  • Holt PR, Kotler DP, Pascal RR (1983) A simple method for determining epithelial cell turnover in small intestine. Studies in young and aging rat gut. Gastroenterology 84:69–74

    CAS  PubMed  Google Scholar 

  • Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W, Tonegawa S (1990) Homing of a γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 343:754–757

    CAS  PubMed  Google Scholar 

  • Kearsey JA, Stadnyk AW (1996) Isolation and characterization of highly purified rat intestinal intraepithelial lymphocytes. J Immunol Methods 194:35–48

    CAS  PubMed  Google Scholar 

  • Lefrancois L (1991) Extrathymic differentiation of intraepithelial lymphocytes: generation of a separate and unequal T-cell repertoire? Immunol Today 12:436–438

    CAS  PubMed  Google Scholar 

  • Lin T, Brunner T, Tietz B, Madsen J, Bonfoco E, Reaves M, Huflejt M, Green DR (1998) Fas ligand-mediated killing by intestinal intraepithelial lymphocytes. Participation in intestinal graft-versus-host disease. J Clin Invest 101:570–577

    CAS  PubMed  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    PubMed  Google Scholar 

  • MacDonald TT, Spencer J (1988) Evidence that activated mucosal T cells play a role in the pathogenesis of enteropathy in human small intestine. J Exp Med 167:1341–1349

    CAS  PubMed  Google Scholar 

  • Meresse B, Dubucquoi S, Tourvieille B, Desreumaux P, Colombel JF, Dessaint JP (2001) CD28+ intraepithelial lymphocytes with long telomeres are recruited within the inflamed ileal mucosa in Crohn disease. Hum Immunol 62:694–700

    Article  CAS  PubMed  Google Scholar 

  • Merger M, Viney JL, Borojevic R, Steele-Norwood D, Zhou P, Clark DA, Riddell R, Maric R, Podack ER, Croitoru K (2002) Defining the roles of perforin, Fas/FasL, and tumour necrosis factor alpha in T cell induced mucosal damage in the mouse intestine. Gut 51:155–63

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Yagi H, Kayaba S, Ishii T, Ohtsu S, Gotoh T, Itoh T (1995) Most thymocytes die in the absence of DNA fragmentation. Arch Histol Cytol 58:249–256

    CAS  PubMed  Google Scholar 

  • Nanno M, Matsumoto S, Koike R, Miyasaka M, Kawaguchi M, Masuda T, Miyawaki S, Cai Z, Shimamura T, Fujiura Y, Ishikawa H (1994) Development of intestinal intraepithelial T lymphocytes is independent of Peyer’s patches and lymph nodes in aly mutant mice. J Immunol 153:2014–2020

    CAS  PubMed  Google Scholar 

  • Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Kronke M, Mak TW (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73:457–467

    CAS  PubMed  Google Scholar 

  • Piguet PF, Vesin C, Guo J, Donati Y, Barazzone C (1998) TNF-induced enterocyte apoptosis in mice is mediated by the TNF receptor 1 and does not require p53. Eur J Immunol 28:3499–3505

    Article  CAS  PubMed  Google Scholar 

  • Piguet PF, Vesin C, Donati Y, Barazzone C (1999) TNF-induced enterocyte apoptosis and detachment in mice: induction of caspases and prevention by a caspase inhibitor, ZVAD-fmk. Lab Invest 79:495–500

    CAS  PubMed  Google Scholar 

  • Roberts SJ, Smith AL, West AB, Findly RC, Owen MJ, Hayday AC (1996) T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 93:11774–11779

    Article  CAS  PubMed  Google Scholar 

  • Rocha B, Vassalli P, Guy-Grand D (1994) Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J Exp Med 180:681–686

    CAS  PubMed  Google Scholar 

  • Ruemmele FM, Russo P, Beaulieu J, Dionne S, Levy E, Lentze MJ, Seidman EG (1999) Susceptibility to FAS-induced apoptosis in human nontumoral enterocytes: role of costimulatory factors. J Cell Physiol 181:45–54

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Ohara-Inagaki K, Tsuzuki T, Yoshikai Y (1995) Host intestinal intraepithelial γδ T lymphocytes present during acute graft-versus-host disease in mice may contribute to the development of enteropathy. Eur J Immunol 25:87–91

    CAS  PubMed  Google Scholar 

  • Satoh M, Yamazaki M (1992) Tumor necrosis factor stimulates DNA synthesis of mouse hepatocytes in primary culture and is suppressed by transforming growth factor beta and interleukin 6. J Cell Physiol 150:134–139

    CAS  PubMed  Google Scholar 

  • Schmitz H, Fromm M, Bentzel CJ, Scholz P, Detjen K, Mankertz J, Bode H, Epple HJ, Riecken EO, Schulzke JD (1999) Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci 112:137–146

    CAS  PubMed  Google Scholar 

  • Schreiber SL, Crabtree GR (1992) The mechanism of action of cyclosporin A and FK506. Immunol Today 13:136–142

    PubMed  Google Scholar 

  • Shiohara T, Moriya N, Hayakawa J, Arahari K, Yagita H, Nagashima M, Ishikawa H (1993) Bone marrow-derived dendritic epidermal T cells express T cell receptor-αβ/CD3 and CD8. Evidence for their extrathymic maturation. J Immunol 150:4323–4330

    CAS  PubMed  Google Scholar 

  • Strater J, Wellisch I, Riedl S, Walczak H, Koretz K, Tandara A, Krammer PH, Moller P (1997) CD95 (APO-1/Fas)-mediated apoptosis in colon epithelial cells: a possible role in ulcerative colitis. Gastroenterology 113:160–167

    Google Scholar 

  • Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S, Nakao K, Nagata S (1995) Expression of the Fas ligand in cells of T cell lineage. J Immunol 154:3806–3813

    CAS  PubMed  Google Scholar 

  • Suzuki H, Jeong KI, Okutani T, Doi K (2000a) Regional variations in the distribution of small intestinal intraepithelial lymphocytes in three inbred strains of mice. J Vet Med Sci 62:881–887

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Jeong KI, Okutani T, Doi K (2000b) Regional variations in the number and subsets of intraepithelial lymphocytes in the mouse small intestine. Comp Med 50:39–42

    CAS  PubMed  Google Scholar 

  • Suzuki H, Jeong KI, Doi K (2001a) Regional variations in the distribution of small intestinal intraepithelial lymphocytes in alymphoplasia (aly/aly) mice and heterozygous (aly/+) mice. Immunol Invest 30:303–312

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Jeong KI, Doi K (2001b) Regional variations in the distributions of small intestinal intraepithelial lymphocytes (IELs) in BALB/c +/+, nu/+, and nu/nu mice. Comp Med 51:127–133

    CAS  PubMed  Google Scholar 

  • Suzuki H, Jeong K 2nd, Doi K (2002a) Age-related changes in the regional variations in the number and subsets of intraepithelial lymphocytes in mouse small intestine. Dev Comp Immunol 26:589–595

    Article  PubMed  Google Scholar 

  • Suzuki H, Jeong KI, Itoh K, Doi K (2002b) Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germ-free and specific pathogen-free mice. Exp Mol Pathol 72:230–235

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Tamura J, Sato S, Hotta Y, Itoh G (1994) Apoptosis of murine large intestine in acute graft-versus-host disease after allogeneic bone marrow transplantation across minor histocompatibility barriers. Transplantation 57:1284–1287

    Google Scholar 

  • Takahashi I, Nakagawa I, Kiyono H, McGhee JR, Clements JD, Hamada S (1995) Mucosal T cells induce systemic anergy for oral tolerance. Biochem Biophys Res Commun 206:414–420

    Article  CAS  PubMed  Google Scholar 

  • Tamura A, Soga H, Yaguchi K, Yamagishi M, Toyota T, Sato J, Oka Y, Itoh T (2003) Distribution of two types of lymphocytes (intraepithelial and lamina-propria-associated) in the murine small intestine. Cell Tissue Res 313:47–53

    Google Scholar 

  • Van Houten N, Blake SF (1996) Direct measurement of anergy of antigen-specific T cells following oral tolerance induction. J Immunol 157:1337–1341

    PubMed  Google Scholar 

  • Wang J, Klein JR (1994) Thymus-neuroendocrine interactions in extrathymic T cell development. Science 265:1860–1862

    CAS  PubMed  Google Scholar 

  • Wolff CH, Hong SC, von Grafenstein H, Janeway CAJ (1993) TCR-CD4 and TCR-TCR interactions as distinctive mechanisms for the induction of increased intracellular calcium in T-cell signalling. J Immunol 151:1337–1345

    CAS  PubMed  Google Scholar 

  • Zajicek G (1986) The application of kinematic equations for the study of cell turnover. J Theor Biol 120:141–149

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our deepest gratitude to Dr. R. Suzuki, Shionogi Pharmaceutical Company, for his encouragement and helpful discussions throughout the study. We greatly appreciate the expert technical assistance of Mr. M. Ito and Mr. Y. Suzuki. We also thank Ms. J. Shoji and Ms. K. Omori for their secretarial assistance, and Mr. D. Arakawa for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunetoshi Itoh.

Additional information

K. Yaguchi and S. Kayaba contributed equally to this work

This work was in part supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (07407066, 10470002, and 13670002 to T.I., and 10770001 to H.S.), and by The Funds for Comprehensive Research on Long Term Chronic Diseases from the Ministry of Health and Welfare of Japan (to T.I.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaguchi, K., Kayaba, S., Soga, H. et al. DNA fragmentation and detachment of enterocytes induced by anti-CD3 mAb-activated intraepithelial lymphocytes. Cell Tissue Res 315, 71–84 (2004). https://doi.org/10.1007/s00441-003-0795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0795-0

Keywords

Navigation