Skip to main content

Advertisement

Log in

Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The effects on histology and microbial ecology in gilthead seabream (Sparus aurata) intestine caused by dietary probiotic and microalgae were studied. Fish were fed non-supplemented (C, control) or supplemented diets with Tetraselmis chuii, Phaeodactylum tricornutum and Bacillus subtilis single or combined (diets T, P, B, BT and BP) for 4 weeks. Curiously, fish fed the experimental diets showed similar morphological alterations when studied by light and electron microscopy and significant signs of intestinal damage were detected. No effect of microalgae or B. subtilis on the intestinal absorptive area was observed, whereas the number of goblet cells and IELs were significantly lower in fish fed the T, P, B and BT diets and T, BT and BP diets, respectively. Interestingly, only the diets containing B. subtilis resulted in a significant reduction of microvilli height. Alterations such as wide intercellular spaces and large vacuoles in enterocytes were observed in fish fed T, B, BT, BT and P in lesser degrees. These observations demonstrate that fish fed experimental diets presented different signs of oedema and inflammation that could compromise their body homeostasis. Moreover, the experimental diets cause important alterations in the intestinal microbiota by a significant decrease in bacterial diversity, as demonstrated by the fall in specific richness, Shannon and range-weighted richness indices. To our knowledge, this is the first in vivo study regarding the implications of the use of probiotics in combination with immunostimulants on fish intestinal morphology and microbiota. More morphofunctional studies are needed in order to correlate the nutritional and immune aspects of fish gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aly SM, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25:128–136

    Article  PubMed  CAS  Google Scholar 

  • Atalah E, Cruz CMH, Izquierdo MS, Izquierdo MS, Rosenlund G, Caballero MJ, Valencia A, Robaina L (2007) Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 270:178–185

    Article  CAS  Google Scholar 

  • Baeverfjord G, Krogdahl Å (1996) Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J Fish Dis 19:375–387

    Article  Google Scholar 

  • Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, Ringø E, Krogdahl Å (2007) Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Br J Nutr 97:699–713

    Article  PubMed  CAS  Google Scholar 

  • Balcázar JL, Rojas-Luna T (2007) Inhibitory activity of probiotic Bacillus subtilis UTM 126 against vibrio species confers protection against vibriosis in juvenile shrimp (Litopenaeus vannamei). Curr Microbiol 55:409–12

    Article  PubMed  Google Scholar 

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–60

    Article  PubMed  CAS  Google Scholar 

  • Birkbeck T, Ringø E (2005) Pathogenesis and the gastrointestinal tract of growing fish. In: Holzapfel W, Naughton P (eds) Microbial ecology in growing animals. Elsevier, Edinburgh, pp 208–234

    Chapter  Google Scholar 

  • Bricknell I, Dalmo RA (2005) The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol 19:457–472

    Article  PubMed  CAS  Google Scholar 

  • Caballero M (2003) Morphological aspects of intestinal cells from gilthead seabream (Sparus aurata) fed diets containing different lipid sources. Aquaculture 225:325–340

    Article  CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Cerezuela R, Guardiola F, Meseguer J, Esteban MA (2012a) Enrichment of gilthead seabream (Sparus aurata L.) diet with microalgae affect immune system. Fish Physiol Biochem (in press)

  • Cerezuela R, Guardiola FA, González P, Meseguer J, Esteban MA (2012b) Effects of dietary B. subtilis, T. chuii, and Pha. tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish Shellfish Immunol 33:342–349

    Article  PubMed  Google Scholar 

  • Clarke AJ, Witcomb DM (1980) A study of the histology and morphology of the digestive tract of the common eel (Anguilla anguilla). J Fish Biol 16:159–170

    Article  Google Scholar 

  • Deplancke B, Gaskins HR (2001) Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr 73:1131S–1141S

    PubMed  CAS  Google Scholar 

  • Desbois AP, Lebl T, Yan L, Smith VJ (2008) Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl Microbiol Biot 81:755–764

    Article  CAS  Google Scholar 

  • Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol 11:45–52

    Article  PubMed  CAS  Google Scholar 

  • Dimitroglou A, Merrifield DL, Spring P, Sweetman J, Moate R, Davies SJ (2010) Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture 300:182–188

    Article  CAS  Google Scholar 

  • Elbal M, Agulleiro B (1986) A histochemical and ultraestructural study of the gut of Sparus auratus (Teleostei). J Submicrosc Cytol 18:335–347

    Google Scholar 

  • Falco A, Frost P, Miest J, Pionnier N, Irnazarow I, Hoole D (2012) Reduced inflammatory response to Aeromonas salmonicida infection in common carp (Cyprinus carpio L.) fed with β-glucan supplements. Fish Shellfish Immunol. doi:10.1016/j.fsi.2012.02.028

  • FAO (2010) The state of world fisheries and aquaculture. FAO, Rome

  • Forstner J, Oliver M, Sylvester F (1995) Production, structure, and biologic relevance of gastrointestinal mucins. In: Ravdin J (ed) Infections of the gastrointestinal tract. Raven, New York, pp 71–88

    Google Scholar 

  • Fredriksen BN, Sævareid K, McAuley L, Lane ME, Bøgwald J, Dalmo RA (2011) Early immune responses in Atlantic salmon (Salmo salar L.) after immunization with PLGA nanoparticles loaded with a model antigen and β-glucan. Vaccine 29:8338–8349

    Article  PubMed  CAS  Google Scholar 

  • Galina J, Yin G, Ardó L, Jeney Z (2009) The use of immunostimulating herbs in fish. An overview of research. Fish Physiol Biochem 35:669–676

    Article  PubMed  CAS  Google Scholar 

  • Gildberg A, Mikkelsen H (1998) Effects of supplementing the feed to Atlantic cod (Gadus morhua) fry with lactic acid bacteria and immuno-stimulating peptides during a challenge trial with Vibrio anguillarum. Aquaculture 167:103–113

    Article  CAS  Google Scholar 

  • Grau A, Crespo S, Sarasquete MC, Canales MLG (1992) The digestive tract of the amberjack Seriola dumerili, Risso: a light and scanning electron microscope study. J Fish Biol 41:287–303

    Article  CAS  Google Scholar 

  • Griffiths BS, Bonkowski M, Roy J, Ritz K (2001) Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl Soil Ecol 16:49–61

    Article  Google Scholar 

  • Heidarieh M, Mirvaghefi AR, Akbari M, Farahmand H, Sheikhzadeh N, Shahbazfar AA, Behgar M (2012) Effect of dietary Ergosan on growth performance, digestive enzymes, intestinal histology, hematological parameters and body composition of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem. doi:10.1007/s10695-012-9602-8

  • Isolauri E, Sütas Y, Kankaanpää P, Arvilommi H, Salminen S (2001) Probiotics: effects on immunity. Am J Clin Nutr 73:444S–450S

    PubMed  CAS  Google Scholar 

  • Joshi M, Hyams J, Treem W, Ricci A (1991) Cytoplasmic vacuolization of enterocytes: an unusual histopathologic finding in juvenile nutritional megaloblastic anemia. Mod Pathol 4:62–65

    PubMed  CAS  Google Scholar 

  • Jovanović B, Baran E, Goetz FW, Palić D (2011) Effects of different lipopolysaccharide preparations on neutrophil function in the fathead minnow, Pimephales promelas Rafinesque. J Fish Dis 34:877–880

    Article  PubMed  Google Scholar 

  • Kleessen B, Hartmann L, Blaut M (2003) Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr 89:597–606

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov SR, Zhu W-Y, Williams BA, Tamminga S, Vos WM, Akkermans ADL (2003) Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol Ecol 43:225–235

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen M, Merrifield DL, Vecino JLG, Myklebust R, Ringø E (2011) Evaluation of prebiotic and probiotic effects on the intestinal gut microbiota and histology of Atlantic salmon (Salmo salar L.). J Aquac Res Dev S1:009

    Google Scholar 

  • Kumar R, Mukherjee SC, Ranjan R, Nayak SK (2008) Enhanced innate immune parameters in Labeo rohita (Ham.) following oral administration of Bacillus subtilis. Fish Shellfish Immunol 24:168–172

    Article  PubMed  CAS  Google Scholar 

  • Liévin-Le Moal V, Servin AL (2006) The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microb Rev 19:315–337

    Article  Google Scholar 

  • Lord HL, Zhang X, Musteata FM, Vuckovic D, Pawliszyn J (2011) In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites. Nat Protoc 6:896–924

    Article  PubMed  CAS  Google Scholar 

  • Mahdhi A, Kamoun F, Bakhrouf A (2011) Inhibitory activity and adhesive ability of potential probiotic Bacillus species to confer protection for Artemia gnotobiotic culture against pathogenic Vibrio spp. Turk J Vet Anim Sci 35:227–223

    Google Scholar 

  • Makridis P, Costa RA, Dinis MT (2006) Microbial conditions and antimicrobial activity in cultures of two microalgae species, Tetraselmis chuii and Chlorella minutissima, and effect on bacterial load of enriched Artemia metanauplii. Aquaculture 255:76–81

    Article  Google Scholar 

  • Makridis P, Moreira C, Alves Costa R, Rodrigues P, Dinis MT (2009) Use of microalgae bioencapsulated in Artemia during the weaning of Senegalese sole (Solea senegalensis Kaup). Aquaculture 292:153–157

    Article  Google Scholar 

  • Martínez G, Shaw EM, Carrillo M, Zanuy S (1998) Protein salting-out method applied to genomic DNA isolation from fish whole blood. Biotechniques 24(24):238–239

    PubMed  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  PubMed  CAS  Google Scholar 

  • McGuckin MA, Eri R, Simms LA, Florin THJ, Radford-Smith G (2009) Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 15:100–113

    Article  PubMed  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Castex M, Ringø E (2010a) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18

    Article  Google Scholar 

  • Merrifield DL, Harper GM, Dimitroglou A, Ringø E, Davies SJ (2010b) Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquac Res 41:1268–1272

    Google Scholar 

  • Merrifield DL, Harper GM, Mustafa S, Carnevali O, Picchietti S, Davies SJ (2011) Effect of dietary alginic acid on juvenile tilapia (Oreochromis niloticus) intestinal microbial balance, intestinal histology and growth performance. Cell Tissue Res 344:135–146

    Article  PubMed  CAS  Google Scholar 

  • Mowry RW (1963) The special value of methods that color both acidic and vicinal hydroxyl groups in the histochemical study of mucins. With revised directions for the colloidal iron stain, the use of Alcian blue G8x and their combinations with the periodic acid-Schiff reaction. Ann NY Acad Sci 106:402–423

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb 59:695–700

    CAS  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: A fish perspective. Fish Shellfish Immunol 29:2–14

    Article  PubMed  CAS  Google Scholar 

  • Newaj-Fyzul A, Adesiyun AA, Mutani A, Ramsubhag A, Brunt J, Austin B (2007) Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 103:1699–706

    Article  PubMed  CAS  Google Scholar 

  • Nonnotte L, Nonnotte G, Leray C (1986) Morphological changes in the middle intestine of the rainbow trout, Salmo gairdneri, induced by a hyperosmotic environment. Cell Tissue Res 243:619–628

    Article  Google Scholar 

  • Nya EJ, Austin B (2010) Use of bacterial lipopolysaccharide (LPS) as an immunostimulant for the control of Aeromonas hydrophila infections in rainbow trout Oncorhynchus mykiss (Walbaum). J Appl Microbiol 108:686–694

    Article  PubMed  CAS  Google Scholar 

  • Patterson BK, Ehrenpreis ED, Yokoo H (1993) Focal enterocyte vacuolization. A new microscopic finding in the acquired immune deficiency wasting syndrome. Am J Clin Pathol 99:24–27

    PubMed  CAS  Google Scholar 

  • Peddie S, Zou J, Secombes CJ (2002) Immunostimulation in the rainbow trout (Oncorhynchus mykiss) following intraperitoneal administration of Ergosan. Vet Immunol Immunopathol 86:101–113

    Article  PubMed  CAS  Google Scholar 

  • Picchietti S, Fausto AM, Randelli E, Carnevali O, Taddei AR, Buonocore F, Scapigliati G, Abelli L (2009) Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish Shellfish Immunol 26:368–376

    Article  PubMed  CAS  Google Scholar 

  • Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, Maita M (2011) Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res Vet Sci 91:92–97

    Article  Google Scholar 

  • Pratheepa V, Sukumaran N (2012) Enzymatic and protective effect analysis on pathogen infected Cyprinus carpio using Euphorbia hirta included medicated feed. Pharmacologia 3:52–56

    Article  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Ringø E, Myklebust R, Mayhew T, Olsen R (2007) Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268:251–264

    Article  Google Scholar 

  • Robertson AM, Wright DP (1997) Bacterial glycosulphatases and sulphomucin degradation. Can J Gastroenterol 11:361–366

    PubMed  CAS  Google Scholar 

  • Rombout JHWM, Abelli L, Picchietti S, Scapigliati G, Kiron V (2011) Teleost intestinal immunology. Fish Shellfish Immunol 31:616–626

    Article  PubMed  CAS  Google Scholar 

  • Sáenz de Rodrigáñez MA, Díaz-Rosales P, Chabrillón M, Smidt H, Arijo S, León-Rubio JM, Alarcón FJ, Balebona MC, Moriñigo MA, Cara JB, Moyano FJ (2009) Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquacult Nutr 15:177–185

    Article  Google Scholar 

  • Salinas I, Cuesta A, Esteban MA, Meseguer J (2005) Dietary administration of Lactobacillus delbrüeckii and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish Shellfish Immunol 19:67–77

    Article  PubMed  CAS  Google Scholar 

  • Salinas I, Myklebust R, Esteban MA, Olsen RE, Meseguer J, Ringø E (2008) In vitro studies of Lactobacillus delbrueckii subsp. lactis in Atlantic salmon (Salmo salar L.) foregut: tissue responses and evidence of protection against Aeromonas salmonicida subsp. salmonicida epithelial damage. Vet Microbiol 128:167–177

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, NY

  • Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921

    PubMed  CAS  Google Scholar 

  • Skjermo J, Størseth TR, Hansen K, Handå A, Øie G (2006) Evaluation of β-(1 → 3, 1 → 6)-glucans and High-M alginate used as immunostimulatory dietary supplement during first feeding and weaning of Atlantic cod (Gadus morhua L.). Aquaculture 261:1088–1101

    Article  CAS  Google Scholar 

  • Steinum T, Sjåstad K, Falk K, Kvellestad A, Colquhoun DJ (2009) An RT PCR-DGGE survey of gill-associated bacteria in Norwegian seawater-reared Atlantic salmon suffering proliferative gill inflammation. Aquaculture 293:172–179

    Article  CAS  Google Scholar 

  • Tadiparthi RA, Bansal A, Wani S, Mathur S, Hall SB, Rastogi A, Higbee A, Gaddam S, Sharma P (2011) Dilated intercellular spaces and lymphocytes on biopsy relate to symptoms in erosive GERD but not NERD. Aliment Pharm Ther 33:1202–1208

    Article  CAS  Google Scholar 

  • Tapia-Paniagua ST, Chabrillón M, Díaz-Rosales P, de la Banda IG, Lobo C, Balebona MC, Moriñigo MA (2010) Intestinal microbiota diversity of the flat fish Solea senegalensis (Kaup, 1858) following probiotic administration. Microb Ecol 60:310–319

    Article  PubMed  Google Scholar 

  • Urán PA, Gonçalves AA, Taverne-Thiele JJ, Schrama JW, Verreth JAJ, Rombout JHWM (2008) Soybean meal induces intestinal inflammation in common carp (Cyprinus carpio L.). Fish Shellfish Immunol 25:751–560

    Article  PubMed  Google Scholar 

  • Wittebolle L, Vervaeren H, Verstraete W, Boon N (2008) Quantifying community dynamics of nitrifiers in functionally stable reactors. Appl Environ Microb 74:286–293

    Article  CAS  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  CAS  Google Scholar 

  • Zhu H, Liu H, Yan J et al (2012) Effect of yeast polysaccharide on some hematologic parameter and gut morphology in channel catfish (Ictalurus punctatus). Fish Physiol Biochem. doi:10.1007/s10695-012-9631-3

Download references

Acknowledgements

This work was funded by a national project of the Ministerio de Ciencia e Innovación (AGL2008-05119-C02-01 and AGL2008-05119-C02-02) and Fundación Séneca (Grupo de Excelencia de la Región de Murcia 04538/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mª Ángeles Esteban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerezuela, R., Fumanal, M., Tapia-Paniagua, S.T. et al. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res 350, 477–489 (2012). https://doi.org/10.1007/s00441-012-1495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1495-4

Keywords

Navigation