Skip to main content

Advertisement

Log in

A Fatty Acid from the Diatom Phaeodactylum tricornutum is Antibacterial Against Diverse Bacteria Including Multi-resistant Staphylococcus aureus (MRSA)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Pathogenic bacteria, such as multidrug-resistant Staphylococcus aureus (MRSA), which are not susceptible to most conventional antibiotics, are causing increased concern in healthcare institutions worldwide. The discovery of novel antibacterial compounds for biomedical exploitation is one avenue that is being pursued to combat these problematic bacteria. Marine eukaryotic microalgae are known to produce numerous useful products but have attracted little attention in the search for novel antibiotic compounds. Cell lysates of the marine diatom, Phaeodactylum tricornutum Bohlin, have been reported to display antibacterial activity in vitro, but the compounds responsible have not been fully identified. In this paper, using column chromatography and reversed-phase high-performance liquid chromatography, we report the isolation of an antibacterial fatty acid. Mass spectrometry and 1H-nuclear magnetic resonance spectroscopy revealed it to be the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). We show that EPA is active against a range of both Gram-positive and Gram-negative bacteria, including MRSA, at micromolar concentrations. These data indicate that it could find application in the topical and systemic treatment of drug-resistant bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen EJ, Nelson EW (1910) On the artificial culture of marine plankton organisms. J Mar Biol Assoc UK 8:421–474

    Google Scholar 

  • Aubert M, Pesando D, Gauthier M (1970) Phenomenes d’antibiose d’origine phytoplanctonique en milieu marin: substances antibactériennes produites par une diatomée Asterionella japonica. Rev Intern Océanogr Méd 19–20:69–76

    Google Scholar 

  • Benkendorff K, Davis AR, Rogers CN, Bremner JB (2005) Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J Exp Mar Biol Ecol 316:29–44

    Article  CAS  Google Scholar 

  • Berland BR, Bonin DJ, Cornu AL, Maestrini SY, Marino J-P (1972) The antibacterial substances of the marine alga Stichochrysis immobilis (Chrysophyta). J Phycol 8:383–392

    CAS  Google Scholar 

  • Borst P, Loos JA, Christ EJ, Slater EC (1962) Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta 62:509–518

    Article  PubMed  CAS  Google Scholar 

  • Bruce DL, Duff DCB, Antia NJ (1967) The identification of two antibacterial products of the marine planktonic alga Isochrysis galbana. J Gen Microbiol 48:293–298

    PubMed  CAS  Google Scholar 

  • Budge SM, Parrish CC (1999) Lipid class and fatty acid composition of Pseudo-nitzschia multiseries and Pseudo-nitzschia pungens and effects of lipolytic enzyme deactivation. Phytochemistry 52:561–566

    Article  CAS  Google Scholar 

  • Cerón García MC, Fernández Sevilla JM, Acién Fernández FG, Molina Grima E, García Camacho F (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12:239–248

    Article  Google Scholar 

  • Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kun JF, Mond JJ, Tarkowski A, Foster SJ (2007) The Staphylococcus aureus surface protein isdA mediates resistance to innate defenses of human skin. Cell Host & Microbe 1:1–14

    Article  CAS  Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Ann Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  • Cooper S, Battat A, Marsot P, Sylvestre M (1983) Production of antibacterial activities by two Bacillariophyceae grown in dialysis culture. Can J Microbiol 29:338–341

    Article  Google Scholar 

  • Cooper SF, Battat A, Marsot P, Sylvestre M, Laliberté C (1985) Identification of antibacterial fatty acids from Phaeodactylum tricornutum grown in dialysis culture. Microbios 42:27–36

    CAS  Google Scholar 

  • De Martino A, Meichenin A, Shi J, Pan K, Bowler C (2007) Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. J Phycol 43:992–1009

    Article  CAS  Google Scholar 

  • d’Ippolito G, Tucci S, Cutignano A, Romano G, Cimino G, Miralto A, Fontana A (2004) The role of complex lipids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim Biophys Acta 1686:100–107

    PubMed  CAS  Google Scholar 

  • Duff DCB, Bruce DL, Antia NJ (1966) The antibacterial activity of marine planktonic algae. Can J Microbiol 12:877–884

    Article  PubMed  CAS  Google Scholar 

  • Findlay JA, Patil AD (1984) Antibacterial constituents of the diatom Navicula delognei. J Nat Prod 47:815–818

    Article  PubMed  CAS  Google Scholar 

  • Fu M, Koulman A, van Rijssel M, Lützen A, de Boer MK, Tyl MR, Liebezeit G (2004) Chemical characterisation of three haemolytic compounds from the microalgal species Fibrocapsa japonica (Raphidophyceae). Toxicon 43:355–363

    Article  PubMed  CAS  Google Scholar 

  • Galbraith H, Miller TB (1973b) Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts. J Appl Bacteriol 36:647–658

    PubMed  CAS  Google Scholar 

  • Guil-Guerrero JL, Giménez-Giménez A, Robles-Medina A, del Mar Rebolloso-Fuentes M, Belarbi E-H, Esteban-Cerdán L, Molina Grima E (2001) Hexane reduces peroxidation of fatty acids during storage. Eur J Lipid Sci Technol 103:271–278

    Article  CAS  Google Scholar 

  • Jüttner F (2001) Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J Phycol 37:744–755

    Article  Google Scholar 

  • Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2:23–28

    PubMed  CAS  Google Scholar 

  • Kellam SJ, Walker JM (1989) Antibacterial activity from marine microalgae in laboratory culture. Br Phycol J 24:191–194

    Article  Google Scholar 

  • Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771

    Article  PubMed  CAS  Google Scholar 

  • Knapp HR, Melly MA (1986) Bactericidal effects of polyunsaturated fatty acids. J Infect Dis 154:84–94

    PubMed  CAS  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  • Lacey RW, Lord VL (1981) Sensitivity of staphylococci to fatty acids: novel inactivation of linolenic acid by serum. J Med Microbiol 14:41–49

    Article  PubMed  CAS  Google Scholar 

  • Laser H (1952) Adaption of Bacillus subtilis to fatty acids. Biochem J 51:57–62

    PubMed  CAS  Google Scholar 

  • Liang Y, Beardall J, Heraud P (2006) Changes in growth, chlorophyll fluorescence and fatty acid composition with culture age in batch cultures of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Bot Mar 49:165–173

    Article  CAS  Google Scholar 

  • Lincoln RA, Strupinski K, Walker JM (1991) Bioactive compounds from algae. Life Chem Rep 8:97–183

    CAS  Google Scholar 

  • Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51:139–144

    Article  PubMed  Google Scholar 

  • Miller RD, Brown KE, Morse SA (1977) Inhibitory activity of fatty acids on the growth of Neisseria gonorrhoeae. Infect Immun 17:303–312

    PubMed  CAS  Google Scholar 

  • Molina Grima E, García Camacho F, Acién Fernández FG (1999) Production of EPA from Phaeodactylum tricornutum. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 57–92

    Google Scholar 

  • Moreno VJ, de Moreno JEA, Brenner RR (1979) Biosynthesis of unsaturated fatty acids in the diatom Phaeodactylum tricornutum. Lipids 14:15–19

    Article  CAS  Google Scholar 

  • Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35:308–326

    Google Scholar 

  • Office for National Statistics (2007) Report: deaths involving MRSA: England and Wales, 2001–2005. Health Stat Q 33:76–81

    Google Scholar 

  • Ohta S, Chang T, Kawashima A, Nagate T, Murase M, Nakanishi H, Miyata H, Kondo M (1994) Anti methicillin-resistant Staphylococcus aureus (MRSA) activity by linolenic acid isolated from the marine microalga Chlorococcum HS-101. Bull Environ Contam Toxicol 52:673–680

    Article  PubMed  CAS  Google Scholar 

  • Parrish CC, Wangersky PJ (1987) Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar Ecol Prog Ser 35:119–128

    Article  CAS  Google Scholar 

  • Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult Int 15:1–9

    Article  CAS  Google Scholar 

  • Pesando D (1972) Étude chimique et structurale d’une substance lipidique antibiotique produite par une diatomée marine: Asterionella japonica. Rev Intern Océanogr Méd 25:49–69

    CAS  Google Scholar 

  • Petschow BW, Batema RP, Ford LL (1996) Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrob Agents Chemother 40:302–306

    PubMed  CAS  Google Scholar 

  • Relf JM, Chisholm JRS, Kemp GD, Smith VJ (1999) Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 264:350–357

    Article  PubMed  CAS  Google Scholar 

  • Scientific Advisory Committee on Nutrition (Committee on Toxicity) (2004) Advice on fish consumption: benefits and risks. The Stationary Office, Norwich

    Google Scholar 

  • Sheu CW, Freese E (1972) Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J Bacteriol 111:516–524

    PubMed  CAS  Google Scholar 

  • Siron R, Giusti G, Berland B (1989) Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar Ecol Prog Ser 55:95–100

    Article  CAS  Google Scholar 

  • Sun CQ, O’Connor CJ, Roberton AM (2003) Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol Med Microbiol 36:9–17

    Article  PubMed  CAS  Google Scholar 

  • Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T (1987) Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother 31:27–31

    PubMed  CAS  Google Scholar 

  • Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48:3645–3654

    Article  PubMed  CAS  Google Scholar 

  • US Food and Drug Administration (1997) Substances affirmed as generally recognized as safe: menhaden oil. Federal Register 62:30751–30757

    Google Scholar 

  • Viso AC, Pesando D, Baby C (1987) Antibacterial and antifungal properties of some marine diatoms in culture. Bot Mar 30:41–45

    Article  Google Scholar 

  • Wang L-L, Johnson EA (1992) Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl Environ Microbiol 58:624–629

    PubMed  CAS  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: Alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425

    PubMed  CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1992) Separation of lipid classes from Phaeodactylum tricornutum using silica cartridges. Phytochemistry 31:3405–3408

    Article  CAS  Google Scholar 

Download references

Acknowledgment

NMR and mass spectrometry experimentation was kindly performed by Dr. Tomas Lebl (School of Chemistry, University of St Andrews) and Dr. Catherine Botting (School of Biology, University of St Andrews), respectively. Dr. Peter Coote (School of Biology, University of St Andrews) kindly gifted the strains of B. cereus, B. weihenstephanensis, C. glabrata, C. neoformis, MRSA252, and Saccharomyces cerevisiae. The Staphylococcus aureus strain was kindly gifted by Prof. Simon Foster (Department of Molecular Biology and Biotechnology, University of Sheffield). This work was funded by a BBSRC studentship (BBS/S/M/2003/10490) with additional support from Aquapharm Bio-Discovery Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desbois, A.P., Mearns-Spragg, A. & Smith, V.J. A Fatty Acid from the Diatom Phaeodactylum tricornutum is Antibacterial Against Diverse Bacteria Including Multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol 11, 45–52 (2009). https://doi.org/10.1007/s10126-008-9118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9118-5

Keywords

Navigation