Skip to main content

Advertisement

Log in

The shape modulation of osteoblast–osteocyte transformation and its correlation with the fibrillar organization in secondary osteons

A SEM study employing the graded osmic maceration technique

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cortex fractured surface and graded osmic maceration techniques were used to study the secretory activity of osteoblasts, the transformation of osteoblast to osteocytes, and the structural organization of the matrix around the cells with scanning electron microscopy (SEM). A specialized membrane differentiation at the base of the cell was observed with finger-like, flattened processes which formed a diffuse meshwork. These findings suggested that this membrane differentiation below the cells had not only functioned in transporting collagen through the membrane but also in orienting the fibrils once assembled. Thin ramifications arose from the large and flat membrane foldings oriented perpendicular to the plane of the osteoblasts. This meshwork of fine filaments could not be visualized with SEM because they were obscured within the matrix substance. Their 3-D structure, however, should be similar to the canalicular system. The meshwork of large, flattened processes was no more evident in the cells which had completed their transformation into osteocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baud CA (1968) Submicroscopic structure and functional aspects of the osteocyte. Clin Orthop Relat Res 56:227–236

    Article  CAS  PubMed  Google Scholar 

  • Birk DE, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103(1):231–240

    Article  CAS  PubMed  Google Scholar 

  • Birk DE, Zycband E (1994) Assembly of the tendon extracellular matrix during development. J Anat 184(Pt 3):457–463

    PubMed  Google Scholar 

  • Bosshardt DD, Schroeder HE (1991) Establishment of acellular extrinsic fiber cementum on human teeth. A light- and electron-microscopic study. Cell Tissue Res 263(2):325–336

    Article  CAS  PubMed  Google Scholar 

  • Boyde A (1969) Correlation of ameloblast size with enamel prism pattern: use of scanning electron microscope to make surface area measurements. Z Zellforsch Mikrosk Anat 93(4):583–593

    Article  CAS  PubMed  Google Scholar 

  • Boyde A (1972) Scanning electron microscope studies of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, vol 1. Academic, New York, pp 259–310

  • Boyde A, Hordell MH (1969) Scanning electron microscopy of lamellar bone. Z Zellforsch Mikrosk Anat 93(2):213–231

    Article  CAS  PubMed  Google Scholar 

  • Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165(4):553–563

    Article  CAS  PubMed  Google Scholar 

  • Church RL, Pfeiffer SE, Tanzer ML (1971) Collagen biosynthesis: synthesis and secretion of a high molecular weight collagen precursor (procollagen). Proc Natl Acad Sci USA 68(11):2638–2642

    Article  CAS  PubMed  Google Scholar 

  • Congiu T, Radice R, Raspanti M, Reguzzoni M (2004) The 3D structure of the human urinary bladder mucosa: a scanning electron microscopy study. J Submicrosc Cytol Pathol 36(1):45–53

    CAS  PubMed  Google Scholar 

  • Doty SB (1981) Morphological evidence of gap junctions between bone cells. Calcif Tissue Int 33(5):509–512

    Article  CAS  PubMed  Google Scholar 

  • Giraud-Guille MM (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42(3):167–180

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki S, Hosaka Y, Iwasaki T, Yamamoto K, Nagayasu A, Ueda H, Kokai Y, Takehana K (2008) The modulation of collagen fibril assembly and its structure by decorin: an electron microscopic study. Arch Histol Cytol 71(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Jones SJ (1974) Secretory territories and rate of matrix production of osteoblasts. Calcif Tissue Res 14(4):309–315

    Article  CAS  PubMed  Google Scholar 

  • Jones SJ, Boyde A, Pawley JB (1975) Osteoblasts and collagen orientation. Cell Tissue Res 159(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Kapacee Z, Richardson SH, Lu Y, Starborg T, Holmes DF, Baar K, Kadler KE (2008) Tension is required for fibripositor formation. Matrix Biol 27(4):371–375

    Article  CAS  PubMed  Google Scholar 

  • Marotti G (1976) Decrement in volume of osteoblasts during osteon formation and its effect on the size of the corresponding osteocytes. In: Meunier PJ (ed) Bone histomorphometry. Armour Montagu, Levallois, pp 385–397

    Google Scholar 

  • Marotti G (1993) A new theory of bone lamellation. Calcif Tissue Int 53(Suppl 1):S47–S55

    Article  PubMed  Google Scholar 

  • Marotti G, Ferretti M, Muglia MA, Palumbo C, Palazzini S (1992) A quantitative evaluation of osteoblast-osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone 13(5):363–368

    Article  CAS  PubMed  Google Scholar 

  • Palumbo C (1986) A three-dimensional ultrastructural study of osteoid-osteocytes in the tibia of chick embryos. Cell Tissue Res 246(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Palumbo C, Palazzini S, Zaffe D, Marotti G (1990) Osteocyte differentiation in the tibia of newborn rabbit: an ultrastructural study of the formation of cytoplasmic processes. Acta Anat (Basel) 137(4):350–358

    Article  CAS  Google Scholar 

  • Pawlicki R (1975) Bone canaliculus endings in the area of the osteocyte lacuna, Electron-microscopic studies. Acta Anat (Basel) 91(2):292–304

    Article  CAS  Google Scholar 

  • Pazzaglia UE, Andrini L, Di Nucci A (1997) The reaction to nailing or cementing of the femur in rats. A microangiographic and fluorescence study. Int Orthop 21(4):267–273

    Article  CAS  PubMed  Google Scholar 

  • Pazzaglia UE, Congiu T, Raspanti M, Ranchetti F, Quacci D (2009) Anatomy of the intracortical canal system: scanning electron microscopy study in rabbit femur. Clin Orthop Relat Res 467:2446–2456

    Article  PubMed  Google Scholar 

  • Riva A, Congiu T, Faa G (1993) The application of the OsO4 maceration method to the study of human bioptic material. A procedure avoiding freeze-fracture. Microsc Res Technique 26:526–527

    Article  CAS  Google Scholar 

  • Rouiller C, Huber L, Kellenberger E, Rutishauser E (1952) The lamellar structure of the osteon. Acta Anat (Basel) 14(1–2):9–22

    Article  CAS  Google Scholar 

  • Ruth EB (1953) Bone studies. II. An experimental study of the Haversian-type vascular channels. Am J Anat 93(3):429–455

    Article  CAS  PubMed  Google Scholar 

  • Shapiro F (1988) Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Jt Surg Am 70(7):1067–1081

    CAS  Google Scholar 

  • Smith JW (1960) The arrangement of collagen fibres in human secondary osteones. J Bone Jt Surg Br 42-B:588–605

    CAS  Google Scholar 

  • Stanka P (1975) Occurrence of cell junctions and microfilaments in osteoblasts. Cell Tissue Res 159(3):413–422

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Mitsushima A (1984) A preparation method for observing intracellular structures by scanning electron microscopy. J Microsc 113:213–222

    Google Scholar 

  • Tanaka K, Mitsushima A, Fukudome H, Kashima Y (1986) Three-dimensional architecture of the Golgi complex observed by high resolution scanning electron microscopy. J Submicrosc Cytol 18:1–9

    CAS  PubMed  Google Scholar 

  • Weinger JM, Holtrop ME (1974) An ultrastructural study of bone cells: the occurrence of microtubules, microfilaments and tight junctions. Calcif Tissue Res 14(1):15–29

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Domon T, Takahashi S, Wakita M (1996) Cellular cementogenesis in rat molars: the role of cementoblasts in the deposition of intrinsic matrix fibers of cementum proper. Anat Embryol (Berl) 193(5):495–500

    CAS  Google Scholar 

Download references

Aknowledgements

The study was carried out using a scanning electron microscope from the “Centre Great Instruments” at the University of Insubria and was supported by research funds from Brescia University. The authors thank Mr. Livio Di Muscio, registrar in orthopaedics at the RNOH (Stanmore, UK), for revision of the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo E. Pazzaglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazzaglia, U.E., Congiu, T., Marchese, M. et al. The shape modulation of osteoblast–osteocyte transformation and its correlation with the fibrillar organization in secondary osteons. Cell Tissue Res 340, 533–540 (2010). https://doi.org/10.1007/s00441-010-0970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0970-z

Keywords

Navigation