Skip to main content
Log in

A new theory of bone lamellation

  • Session II
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

A comparative polarized light (PLM), scanning (SEM), and transmission (TEM) electron microscopy study was carried out on cross- and longitudinal sections of human lamellar bone in the tibiae of four male subjects aged 9, 23, 45, and 70 years. SEM analysis was also performed on rectangular-prismatic samples in order to observe each lamella sectioned both transversely and longitudinally. The results obtained do not confirm the model hitherto suggested to explain the lamellar appearance of bone. In particular, the classic description by Gebhardt (still accepted by the majority of bone researchers), which suggests that collagen fibers alternate between longitudinal and transversal in successive lamellae, or that they have spiral paths of different pitches, appears to be no longer acceptable in the light of our findings. In fact, SEM and TEM observations here reported agree in demonstrating that lamellar bone is made up of alternating collagen-rich (dense lamellae) and collagen-poor (loose lamellae) layers, all having an interwoven arrangement of fibers. No interlamellar cementing substance was observed between the lamellae, and collagen bundles form a continuum throughout lamellar bone. Preliminary measurements of lamellar thickness indicate that dense lamellae are significantly (P < 0.001) thinner than loose lamellae. Compared with the classic model of Gebhardt, thedense lamellae correspond to the transverse lamellae and are birifringent under PLM, whereas theloose lamellae correspond to thelongitudinal lamellae and are extinguished. Collagen-fiber organization in dense and loose lamellae is discussed in terms of bone biomechanics and osteogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Havers C (1691) Osteologica nova. London

  2. Ebner von V (1887) Sind die Fibrillen des Knochengewebes verkalkt oder nicht? Arch mikrosk Anat 29:213–236

    Google Scholar 

  3. Ranvier J (1889) Traité technique d'histologie, 2nd ed. Savy, Paris

    Google Scholar 

  4. Gebhardt W (1906) Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wirbeltierknochens. II. Spezieller Teil. Der Bau der Haversschen Lamellensysteme und seine funktionelle Bedeutung. Arch Entwickl Mech Org 20:187–322

    Google Scholar 

  5. Ziegler O (1906) Studien über die feinere Struktur des Röhrenknochens und dessen Polarisation. Dtsch Z Chir 85:248–263

    Google Scholar 

  6. Amprino R, Bairati A (1936) Processi di ricostruzione e di riassorbimento nella sostanza compatta delle ossa dell'uomo. Ricerche su cento soggetti dalla nascita sino a t età. Z Zellforsch 24:439–511

    Google Scholar 

  7. Weimann JP, Sicher H (1955) Bone and bones. Fundamentals of bone biology, 2nd ed. Mosby, St Louis

    Google Scholar 

  8. Lacroix P (1951) The organization of bone. J & A Churchill Ltd, London

    Google Scholar 

  9. McLean FC, Urist MR (1961) Bone: an Introduction to the physiology of skeletal tissue, 2nd ed. University Chicago Press, Chicago

    Google Scholar 

  10. Pritchard JJ (1956) General anatomy and histology of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, 2nd ed, vol 1. Academic Press, New York, pp 1–25

    Google Scholar 

  11. Weidenreich F (1923) Knochenstudien. I. Über Aufbau und Entwicklung des Knochens und den Charakter des Knochengewebes. Z Anat Entwickl Gesch 69:382–466

    Google Scholar 

  12. Smith JW (1960) The arrangement of collagen fibres in human secondary osteons. J Bone Jt Surg 42B:588–605

    Google Scholar 

  13. Ruth EB (1947) Bone studies. I. Fibrillar structure of adult human bone. Am J Anat 80:35–53

    Google Scholar 

  14. Rouiller C, Huber L, Kellenberger E, Rutishauser E (1952) La structure lamellaire de l'ostéone. Acta Anat 14:9–22

    Google Scholar 

  15. Rouiller C (1956) Collagen fibres in connective tissue. In: Bourne GH (ed) The biochemistry and physiology of bone, 1st ed. Academic Press, New York, pp 104–143

    Google Scholar 

  16. Frank RM, Frank P, Klein M, Fontaine R (1955) L'os compact humain normal au microscope électronique. Arch Anat Micr Morph Exp 44:191–206

    Google Scholar 

  17. Ascenzi A, Bonucci E, Bocciarelli DS (1965) An electron microscope study of osteon calcification. J Ultrastruct Res 12:287–303

    Google Scholar 

  18. Ascenzi A, Benvenuti A (1986) Orientation of collagen fibers at the boundary between two successive osteonic lamellae and its mechanical interpretation. J Biomech 19:455–463

    Google Scholar 

  19. Giraud-Guille MM (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180

    Google Scholar 

  20. Engström A, Engfeldt B (1953) Lamellar structure of osteons demonstrated by microradiography. Experientia 9:19

    Google Scholar 

  21. Boyde A, Hobdell MH (1969) Scanning electron microscopy of lamellar bone. Z Zellforsch 93:213–231

    Google Scholar 

  22. Frasca P, Harper RA, Katz JL (1976) Isolation of single osteons and osteon lamellae. Acta Anat 95:122–129

    Google Scholar 

  23. Reid SA (1986) A study of lamellar organization in juvenile and adult human bone. Anat Embriol (Berl) 174:329–338

    Google Scholar 

  24. Ascenzi A, Bigi A, Ripamonti A, Roveri N (1983) X-ray diffraction analysis of transversal osteonic lamellae. Calcif Tissue Int 35:279–283

    Google Scholar 

  25. Ascenzi A, Bigi A, Koch MH, Ripamonti A, Roveri N (1985) A low-angle X-ray diffraction analysis of osteonic inorganic phase using synchrotron radiation. Calcif Tissue Int 37:659–664

    Google Scholar 

  26. Portigliatti Barbos M, Bianco P, Ascenzi A (1983) Distribution of osteonic and interstitial components in the human femoral shaft with reference to structure, calcification and mechanical properties. Acta Anat 115:178–186

    Google Scholar 

  27. Boyde A, Bianco P, Portigliatti Barbos M, Ascenzi A (1984) Collagen orientation in compact bone. A new method for the determination of the proportion of collagen parallel to the plane of compact section. Metab Bone Dis Rel Res 5:299–308

    Google Scholar 

  28. Portigliatti Barbos M, Bianco P, Ascenzi A, Boyde A (1984) Collagen orientation in compact bone: II. Distribution of lamellae in the whole of the femoral shaft with reference to its mechanical properties. Metab Bone Dis Rel Res 5:309–311

    Google Scholar 

  29. Ascenzi A, Boyde A, Portigliatti Barbos M, Carando S (1987) Micro-biomechanics vs. macro-biomechanics in cortical bone. A micromechanical investigation of femurs deformed by bending. J Biomech 20:1045–1053

    Google Scholar 

  30. Ascenzi A, Improta S, Portigliatti Barbos M, Carando S, Boyde A (1987) Distribution of lamellae in human femoral shafts deformed by bending with inferences on mechancial properties. Bone 11:35–39

    Google Scholar 

  31. Portigliatti Barbos M, Carando S, Ascenzi A, Boyde A (1987) On the structural symmetry of human femurs. Bone 8:165–169

    Google Scholar 

  32. Carando S, Portigliatti Barbos M, Ascenzi A, Boyde A (1989) Orientation of collagen in human tibial and fibular shafts and possible correlation with mechanical properties. Bone 10:139–142

    Google Scholar 

  33. Boyde A, Riggs CM (1990) The quantitative study of the orientation of collagen in compact bone slices. Bone 11:35–39

    Google Scholar 

  34. Carando S, Portigliatti Barbos M, Ascenzi A, Riggs CM, Boyde A (1991) Macroscopic shape of, and lamellaa distribution within, the upper limb shafts, allowing inferences about mechanical properties. Bone 12:265–269

    Google Scholar 

  35. Boyde A (1972) Scanning electron microscope studies of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, 2nd ed, vol 1. Academic Press, New York, pp 259–310

    Google Scholar 

  36. Marotti G, Muglia MA (1988) A scanning electron microscope study of human bony lamellae. Proposal for a new model of collagen lamellar organization. Arch Ital Anat Embriol 93:163–175

    Google Scholar 

  37. Marotti G (1990) The original contribution of the scanning electron microscope to the knowledge of bone structure. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publisher, Boston, pp 19–39

    Google Scholar 

  38. Ebner von V (1875) Über den feineren Bau der Knochensubstanz. S B Akad Wiss Wien math-rat Kl 72:49–138

    Google Scholar 

  39. Kölliker A (1889) Handbuch der Gewebelehere des Menschen, 6th ed. W Englemann, Leipzig

    Google Scholar 

  40. Weidenreich F (1930) Das Knochengewebe. In: Möllendorf von W (ed) Handbuch der Mikrosckopischen Anatomie des Menschen, vol 2. Springer, Berlin, pp 391–520

    Google Scholar 

  41. Frost HM (1962) Interlamellar thickness in human bone. Clin Orthop 24:198–205

    Google Scholar 

  42. Ascenzi A, Benvenuti A, Bonucci E (1982) The tensile properties of single osteonic lamellae: technical problems and preliminary results. J Biomech 15:29–37

    Google Scholar 

  43. Kragstrub J, Melsen F, Mosekilde L (1983) Thickness of lamellae in normal human iliac trabecular bone. Metab Bone Dis Rel Res 4:291–295

    Google Scholar 

  44. Bernard GW, Pease DC (1969) An electron microscopic study of initial intramembranous osteogenesis. Am J Anat 125:271–290

    Google Scholar 

  45. Bonucci E (1981) Calcifiable matrices. In: Dezyl Z, Adam M (eds) Connective tissue research: chemistry, biology and physiology. Alan R. Liss, New York, pp 113–123

    Google Scholar 

  46. Bonucci E (1984) The structural basis of calcification. In: Ruggeri S, Motta PM (eds) Ultrastructure of connective tissue matrix. Martinus Nijhoff Publisher, Boston, pp 165–191

    Google Scholar 

  47. Cameron DA (1972) The ultrastructure of bone. In: Bourne GH (ed) The biochemistry and physiology of bone, 2nd ed. vol 1. Academic Press, New York, pp 191–236

    Google Scholar 

  48. Ascenzi A, Bonucci E (1964) The ultimate tensile strength of single osteons. Acta Anat 58:160–183

    Google Scholar 

  49. Marotti G, Muglia MA (1992) The structure of primary and secondary osteons studied with the scanning electron microscope. (abstract 85 from bone morphology 1992) Bone 13:A22

    Google Scholar 

  50. Ascenzi A, Bonucci E (1967) The tensile properties of single osteons. Anat Rec 158:375–386

    Google Scholar 

  51. Ascenzi A, Bonucci E, Simkin A (1973) An approach to the mechanical properties of single osteonic lamellae. J Biomech 6:227–235

    Google Scholar 

  52. Jones SJ, Boyde A, Pawley JB (1975) Osteoblasts and collagen orientation. Cell Tissue Res 159:73–80

    Google Scholar 

  53. Marotti G, Muglia MA, Zaffe D (1985) A SEM study of osteocyte orientation in alternately structured osteons. Bone 6:331–334

    Google Scholar 

  54. Palumbo C (1986) A three-dimensional ultrastrucual study of osteoid-osteocytes in the tibia of chick embryos. Cell Tissue Res 246:125–131

    Google Scholar 

  55. Palumbo C, Palazzini S, Zaffe D, Marotti G (1989) Osteocyte differentiation in the tibia of newborn rabbit: an ultrastrucual study of the formation of cytoplasmic processes. Acta Anat 137:350–358

    Google Scholar 

  56. Marotti G, Canè V, Palazzini S, Palumbo C (1990) Structure-function relationships in the osteocyte. Ital J Miner Elect Metab 4:93–106

    Google Scholar 

  57. Nefussi JR, Sautier JM, Nicolas V, Forest N (1991) How osteoblasts become osteocytes: a decreasing matrix-forming process. J Biol Buccale 19:75–92

    Google Scholar 

  58. Palumbo C, Palazzini S, Marotti G (1990) Morphological study of intercellular junctions during osteocyte differentiation. Bone 11:401–406

    Google Scholar 

  59. Marotti G, Ferretti M, Muglia MA, Palumbo C, Palazzini S (1992) A quantitative evaluation of osteoblast-osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone 13:363–368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marotti, G. A new theory of bone lamellation. Calcif Tissue Int 53 (Suppl 1), S47–S56 (1993). https://doi.org/10.1007/BF01673402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01673402

Key word

Navigation