Skip to main content

Assessment of Osteocytes: Techniques for Studying Morphological and Molecular Changes Associated with Perilacunar/Canalicular Remodeling of the Bone Matrix

  • Protocol
  • First Online:
Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2230))

Abstract

Recent advances have revived interest in the concept of osteocyte perilacunar/canalicular remodeling (PLR) and have motivated efforts to identify the mechanisms regulating this process in bone in the context of normal physiology and pathological conditions. Here, we describe several methods that are evaluating morphological changes associated with PLR function of osteocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238

    Article  CAS  PubMed  Google Scholar 

  2. Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell ... and more. Endocr Rev 34(5):658–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. You LD, Weinbaum S, Cowin SC, Schaffler MB (2004) Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A Discov Mol Cell Evol Biol 278(2):505–513

    Article  PubMed  Google Scholar 

  4. Buenzli PR, Sims NA (2015) Quantifying the osteocyte network in the human skeleton. Bone 75:144–150

    Article  CAS  PubMed  Google Scholar 

  5. Schaffler MB, Henderson SC, Wang Y, Wang L, Weinbaum S, Majeska RJ, Han Y (2005) In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci 102(33):11911–11916

    Article  PubMed  CAS  Google Scholar 

  6. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54(2):182–190

    Article  CAS  PubMed  Google Scholar 

  7. Scheiner S, Théoval A, Pivonka P, Smith DW, Bonewald LF (2014) Investigation of nutrient transport mechanisms in the lacunae-canaliculi system. IOP Conf Ser Mater Sci Eng 10(1):1–8

    Google Scholar 

  8. Fritton SP, Weinbaum S (2009) Fluid and solute transport in bone: flow-induced Mechanotransduction. Annu Rev Fluid Mech 41:347–374

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang L (2018) Solute transport in the bone lacunar-canalicular system (LCS). Curr Osteoporos Rep 16(1):32–41

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density — is there a role for mechanosensing? Bone 45(2):321–329

    Article  PubMed  Google Scholar 

  11. Tsourdi E, Jähn K, Rauner M, Busse B, Bonewald LF (2018) Physiological and pathological osteocytic osteolysis. J Musculoskelet Neuronal Interact 18(3):292–303

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Qing H, Bonewald LF (2009) Osteocyte remodeling of the perilacunar and pericanalicular matrix. Int J Oral Sci 1(2):59–65

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wysolmerski JJ (2012) Osteocytic osteolysis: time for a second look? Bonekey Rep 1:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Belanger LF (1969) Osteocytic osteolysis. Calcif Tissue Res 4(1):1–12

    Article  CAS  PubMed  Google Scholar 

  15. Jande SS, Bélanger LF (1970) Electron microscopy of osteocytes and the pericellular matrix in rat trabecular bone. Calcif Tissue Res 6(1):280–289

    Article  Google Scholar 

  16. Bonewald LF (2007) Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 1116:281–290

    Article  CAS  PubMed  Google Scholar 

  17. McGee-Lawrence ME, Carey HV, Donahue SW (2008) Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength. Am J Physiol Integr Comp Physiol 295(6):R1999–R2014

    Article  CAS  Google Scholar 

  18. Qing H, Ardeshirpour L, Divieti Pajevic P, Dusevich V, Jähn K, Kato S, Wysolmerski J, Bonewald LF (2012) Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res 27(5):1018–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teti A, Zallone A (2009) Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44(1):11–16

    Article  CAS  PubMed  Google Scholar 

  20. Yee CS, Schurman CA, White CR, Alliston T (2019) Investigating osteocytic perilacunar/canalicular remodeling. Curr Osteoporos Rep 17(4):157–168

    Article  PubMed  PubMed Central  Google Scholar 

  21. Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, Park JS, Onodera T, Krane SM, Noda M, Itohara S (2006) A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem 281(44):33814–33824

    Article  CAS  PubMed  Google Scholar 

  22. Tang SY, Herber R-P, Ho SP, Alliston T (2012) Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res 27(9):1936–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jähn K, Kelkar S, Zhao H, Xie Y, Tiede-Lewis LAM, Dusevich V, Dallas SL, Bonewald LF (2017) Osteocytes acidify their microenvironment in response to PTHrP in vitro and in lactating mice in vivo. J Bone Miner Res 32(8):1761–1772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lotinun S, Ishihara Y, Nagano K, Kiviranta R, Carpentier VT, Neff L, Parkman V, Ide N, Hu D, Dann P, Brooks D, Bouxsein ML, Wysolmerski J, Gori F, Baron R (2019) Cathepsin K–deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression. J Clin Invest 129(8):3058–3071

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yamada S, Billinghurst RC, Chrysovergis K, Inoue S, Poole AR, Holmbeck K, Pidoux I, Birkedal-Hansen H, Bianco P, Wu W (2004) The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118(1):147–156

    PubMed  Google Scholar 

  26. Tokarz D, Martins JS, Petit ET, Lin CP, Demay MB, Liu ES (2018) Hormonal regulation of osteocyte perilacunar and canalicular remodeling in the Hyp mouse model of X-linked hypophosphatemia. J Bone Miner Res 33(3):499–509

    Article  CAS  PubMed  Google Scholar 

  27. Kaya S, Basta-Pljakic J, Seref-Ferlengez Z, Majeska RJ, Cardoso L, Bromage T, Zhang Q, Flach CR, Mendelsohn R, Yakar S, Fritton SP, Schaffler MB (2017) Lactation induced changes in the volume of osteocyte lacunar-canalicular space Alter mechanical properties in cortical bone tissue. J Bone Miner Res 32(4):688–697

    Article  CAS  PubMed  Google Scholar 

  28. Dole NS, Mazur CM, Acevedo C, Lopez JP, Monteiro DA, Fowler TW, Gludovatz B, Walsh F, Regan JN, Messina S, Evans DS, Lang TF, Zhang B, Ritchie RO, Mohammad KS, Alliston T (2017) Osteocyte-intrinsic TGF-β signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep 21(9):2585–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang SY, Herber RP, Ho SP, Alliston T (2012) Matrix metalloproteinase-13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res 27(9):1936–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amling M, Püschel K, Rolvien T, Yorgan T, Jeschke A, Busse B, Krause M, Demay MB, Schinke T (2017) Vitamin D regulates osteocyte survival and perilacunar remodeling in human and murine bone. Bone 103:78–87

    Article  PubMed  CAS  Google Scholar 

  31. Kogawa M, Wijenayaka AR, Ormsby RT, Thomas GP, Anderson PH, Bonewald LF, Findlay DM, Atkins GJ (2013) Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J Bone Miner Res 28(12):2436–2448

    Article  CAS  PubMed  Google Scholar 

  32. Dole NS, Mazur CM, Acevedo C, Lopez JP, Monteiro DA, Fowler TW, Gludovatz B, Walsh F, Regan JN, Messina S, Evans DS, Lang TF, Zhang B, Ritchie RO, Mohammad KS, Alliston T (2017) Osteocyte-intrinsic TGF-β signaling regulates bone quality through perilacunar/canalicular remodeling. Cell Rep 21(9):2585–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heller-Steinberg M (1951) Ground substance, bone salts, and cellular activity in bone formation and destruction. Am J Anat 89(3):347–379

    Article  CAS  PubMed  Google Scholar 

  34. Chappard D, Baslé MF, Legrand E, Audran M (2011) New laboratory tools in the assessment of bone quality. Osteoporos Int 22(8):2225–2240

    Article  CAS  PubMed  Google Scholar 

  35. Tazawa K, Hoshi K, Kawamoto S, Tanaka M, Ejiri S, Ozawa H (2004) Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered. J Bone Miner Metab 22(6):524–529

    Article  CAS  PubMed  Google Scholar 

  36. Baylink DJ, Wergedal JE (1971) Bone formation by osteocytes. Am J Phys 221(3):669–678

    Article  CAS  Google Scholar 

  37. Webster DJ, Schneider P, Dallas SL, Müller R (2013) Studying osteocytes within their environment. Bone 54(2):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fowler TW, Acevedo C, Mazur CM, Hall-Glenn F, Fields AJ, Bale HA, Ritchie RO, Lotz JC, Vail TP, Alliston T (2017) Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep 7:44618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, Bonewald LF, Dallas SL (2017) Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging 9(10):2190–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kamel-ElSayed SA, Tiede-Lewis LM, Lu Y, Veno PA, Dallas SL (2015) Novel approaches for two and three dimensional multiplexed imaging of osteocytes. Bone 76:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneider P, Meier M, Wepf R, Müller R (2010) Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone 47(5):848–858

    Article  PubMed  Google Scholar 

  42. Dong P, Pacureanu A, Zuluaga MA, Olivier C, Grimal Q, Peyrin F (2014) Quantification of the 3d morphology of the bone cell network from synchrotron micro-CT images. Image Anal Stereol 33(2):157

    Article  Google Scholar 

  43. Schneider P, Meier M, Wepf R, Müller R (2011) Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network. Bone 49(2):304–311

    Article  PubMed  Google Scholar 

  44. Sano H, Kikuta J, Furuya M, Kondo N, Endo N, Ishii M (2015) Intravital bone imaging by two-photon excitation microscopy to identify osteocytic osteolysis in vivo. Bone 74:134–139

    Article  PubMed  Google Scholar 

  45. Fowler TW, Acevedo C, Mazur CM, Hall-Glenn F, Fields AJ, Bale HA, Ritchie RO, Lotz JC, Vail TP, Alliston T (2017) Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep 7:44618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mazur CM, Woo JJ, Yee CS, Fields AJ, Acevedo C, Bailey KN, Kaya S, Fowler TW, Lotz JC, Dang A, Kuo AC, Vail TP, Alliston T (2019) Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis. Bone Res 7:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gaudin-Audrain C, Gallois Y, Pascaretti-Grizon F, Hubert L, Massin P, Baslé M-F, Chappard D (2008) Osteopontin is histochemically detected by the AgNOR acid-silver staining. Histol Histopathol 23(4):469–478

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Skinner RA (2003) Decalcification of bone tissue BT. In: An YH, Martin KL (eds) Handbook of histology methods for bone and cartilage. Humana Press, Totowa, NJ, pp 167–184

    Google Scholar 

  49. Monleau M, Bonnel S, Gostan T, Blanchard D, Courgnaud V, Lecellier C-H (2014) Comparison of different extraction techniques to profile microRNAs from human sera and peripheral blood mononuclear cells. BMC Genomics 15(1):395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from NIH R01DE019284, P30AR061312, R21AR070403; NSF 1636331 and Center for Disruptive Musculoskeletal Innovation, DOD OR170044, and the Read Research Foundation (TA), NIA-1F31AG063402-01A1 (CS), and NIH P01AG039355 and R21AR054449 (SD). We acknowledge use of the UMKC Confocal Microscopy Core supported by NIH grants S10RR027668 and S10OD021665.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Alliston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dole, N.S., Yee, C.S., Schurman, C.A., Dallas, S.L., Alliston, T. (2021). Assessment of Osteocytes: Techniques for Studying Morphological and Molecular Changes Associated with Perilacunar/Canalicular Remodeling of the Bone Matrix. In: Hilton, M.J. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 2230. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1028-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1028-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1027-5

  • Online ISBN: 978-1-0716-1028-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics