Skip to main content
Log in

Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Although our understanding of neuronal development in Trochozoa has progressed substantially in recent years, relatively little attention has been paid to the bivalve molluscs in this regard. In the present study, the development of FMRFamide-, serotonin- and catecholamine-containing cells in the mussel, Mytilus trossulus, was examined using immunocytochemical and histofluorescent techniques. Neurogenesis starts during the trochophore stage at the apical extreme with the appearance of one FMRFamide-like immunoreactive (lir) and one serotonin-lir sensory cell. Later, five FMRFamide-lir and five serotonin-lir apical sensory cells appear, and their basal fibres form an apical neuropil. Fibres of two lateral FMRFamide-lir apical cells grow posteriorly and at the time that they reach the developing foot, the first FMRFamide-lir neurons of the pedal ganglia also appear. Subsequently, FMRFamide-lir fibres grow further posteriorly and reach the caudal region where neurons of the developing visceral ganglia then begin to appear. In contrast, the five apical serotonin-lir neurons do not appear to project outside the apical neuropil until the late veliger stage. Catecholamine-containing cells are first detected in the veliger stage where they appear above the oesophagus, and subsequently in the velum, foot, and posterior regions. Though neural development in M. trossulus partly resembles that of polyplacophorans in the appearance of the early FMRFamidergic elements, and of scaphopods in the appearance of the early serotonergic elements, the scenario of neural development in M. trossulus differs considerably from that of other Trochozoa (bivalves, gastropods, polyplacophorans, scaphopods and polychaetes) studied to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barlow LA, Truman JW (1992) Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotis rufescens. J Neurobiol 23:829–844

    Article  PubMed  CAS  Google Scholar 

  • Bayne BL (1976) The biology of mussel larvae. In: Bayne BL (ed) Marine mussels: their ecology and physiology. Cambridge University Press, Cambridge, pp 81–120

    Google Scholar 

  • Beiras R, Widdows J (1995) Effects of the neurotransmitters dopamine, serotonin and norepinephrine on the ciliary activity of mussel (Mytilis edulis) larvae. Mar Biol 122:597–603

    Article  CAS  Google Scholar 

  • Beklemishev WN (1969) Principles of comparative anatomy of invertebrates—organology. University of Chicago Press, Chicago

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, vol 1–2. Freeman and Co, San Francisco

    Google Scholar 

  • Croll RP (2000) Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails. Microsc Res Tech 49:570–578

    Article  PubMed  CAS  Google Scholar 

  • Croll RP (2001) Catecholamine-containing cells in the central nervous system and periphery of Aplysia californica. J Comp Neurol 441:91–105

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Chiasson BJ (1989) Postembryonic development of serotonin-like immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis. J Comp Neurol 280:122–142

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Dickinson AJG (2004) Form and function of the larval nervous system in molluscs. Invertebr Reprod Dev 46:173–187

    Google Scholar 

  • Croll RP, Voronezhskaya EE (1995) Early FMRFamide-like immunoreactive cells in gastropod neurogenesis. Acta Biol Hung 46:295–303

    PubMed  CAS  Google Scholar 

  • Croll RP, Voronezhskaya EE (1996) Early elements in gastropod neurogenesis. Dev Biol 173:344–347

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Jackson DL, Voronezhskaya EE (1997) Catecholamine-containing cells in larval and post-larval bivalve molluscs. Biol Bull 193:116–124

    Article  CAS  Google Scholar 

  • Dickinson AJG, Croll RP (2003) Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J Comp Neurol 466:197–218

    Article  PubMed  Google Scholar 

  • Dickinson AJG, Nason J, Croll RP (1999) Histochemical localization of FMRFamide, serotonin and catecholamine in embryonic Crepidula fornicata (Prosobranchia: Gastropoda). Zoomorphology 119:49–62

    Article  Google Scholar 

  • Dickinson AJG, Croll RP, Voronezhskaya EE (2000) Development of embryonic cells containing serotonin, catecholamines and FMRFamide-related peptides in Aplysia californica. Biol Bull 199:305–315

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach TJ, Koehncke NK, Goldberg JI (1991) Characterization and development of rotational behavior in Helisoma embryos: role of endogenous serotonin. J Neurobiol 22:922–934

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach TJ, Koss R, Goldberg JI (1998) Early development of an identified serotonergic neuron in Helisoma trivolvis embryos: serotonin expression, de-expression, and uptake. J Neurobiol 34:361–376

    Article  PubMed  CAS  Google Scholar 

  • Flyachinskaya LP (2000) Localization of serotonin and FMRFamide in the bivalve mollusc Mytilus edulis at early stages of its development. J Evol Biochem Physiol 36:66–70

    CAS  Google Scholar 

  • Flyachinskaya LP, Kulakovsky EE (1991) Larval development of Mytilus edulis (Mytilida, Mytilidae). Zool Zhurn 70:23–29 (in Russian)

    Google Scholar 

  • Friederich S, Wanninger A, Brückner M, Haszprunar G (2002) Neurogenesis in the mossy chiton, Mopalia mucosa (Gould) (Polyplacophora): evidence against molluscan metamerism. J Morphol 253:109–117

    Article  Google Scholar 

  • Furness JB, Costa M, Wilson AJ (1977) Water-stable fluorophores, produced by reaction with aldehyde solutions, for the histochemical localization of catechol- and indolethylamines. Histochemistry 52:159–170

    Article  PubMed  CAS  Google Scholar 

  • Gifondorwa DJ, Leise EM (2006) Programmed cell death in the apical ganglion during larval metamorphosis of the marine mollusc Ilyanassa obsoleta. Biol Bull 210:109–120

    Article  PubMed  Google Scholar 

  • Giloh H, Sedat JW (1982) Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 217:1252–1255

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JI, Koehncke NK, Christopher KJ, Neumann C, Diefenbach TJ (1994) Pharmacological characterization of a serotonin receptor involved in an early embryonic behavior of Helisoma trivolvis. J Neurobiol 25:1545–1557

    Article  PubMed  CAS  Google Scholar 

  • Haszprunar G, Friedrich S, Wanninger A, Ruthensteiner B (2002) Fine structure and immunochemistry of a new chemosensory system in the chiton larva (Mollusca: Polyplacophora). J Morphol 251:210–218

    Article  PubMed  Google Scholar 

  • Hay-Schmidt A (1995) The larval nervous system of Polygordius lacteus Scheinder 1868 (Polygordiidae, Polychaeta): immunocytochemical data. Acta Zool (Stockholm) 76:121–140

    Article  Google Scholar 

  • Jacob MH (1984) Neurogenesis in Aplysia californica resembles nervous system formation in vertebrates. J Neurosci 5:388-407

    Google Scholar 

  • Kandel ER, Kriegstein A, Schacher S (1981) Development of the central nervous system of Aplysia in terms of the differentiation of its specific identifiable cells. Neuroscience 5:2033–2063

    Article  Google Scholar 

  • Kempf SC, Page LR (2005) Anti-tubulin labeling reveals ampullary neuron ciliary bundles in opisthobranch larvae and a new putative neural structure associated with the apical ganglion. Biol Bull 208:169–182

    Article  PubMed  Google Scholar 

  • Kempf SC, Page LR, Pires A (1997) Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J Comp Neurol 386:507–528

    Article  PubMed  CAS  Google Scholar 

  • Koolakovsky EE, Phlyachinskaya LP (1993) Formation of elements of the regulatory systems during larval development of Mytilus edulis. Zool Zhurnal 72:20–28 (in Russian)

    Google Scholar 

  • Koshtoyants KS, Buznikov GA, Manukhin BN (1961) The possible role of 5-hydroxy-tryptamine in the motor activity of embryos of some marine gastropods. Comp Biochem Physiol 3:20–26

    Article  PubMed  CAS  Google Scholar 

  • Kreiling JA, Jessen-Eller K, Miller J, Seegal RF, Reinisch CL (2001) Early development of the serotonergic and dopaminergic nervous system in Spisula solidissima (surf clam) larvae. Comp Biochem Physiol A 130:341–351

    Article  CAS  Google Scholar 

  • Kriegstein AR (1977) Development of the nervous system of Aplysia californica. Proc Natl Acad Sci USA 74:375–378

    Article  PubMed  CAS  Google Scholar 

  • Kuang S, Goldberg JI (2001) Laser ablation reveals regulation of ciliary activity by serotonergic neurons in molluscan embryos. J Neurobiol 47:1–15

    Article  PubMed  CAS  Google Scholar 

  • Lacalli TC (1984) Structure and organization of the nervous system in the trochophore larva of Spirobranchus. Philos Trans R Soc Lond B 306:79–135

    Article  Google Scholar 

  • Lloyd PE, Church PJ (1994) Cholinergic neuromuscular synapses in Aplysia have low endogenous acetylcholinesterase activity and a high-affinity uptake system for acetylcholine. J Neurosci 14:6722–6733

    PubMed  CAS  Google Scholar 

  • Malakhov VV, Medvedeva LA (1985) Embryonic and larval development in the bivalve mollusc Mytilus edulis (Mytilida, Mytilidae). Hydrobiol Zhurnal 64:23–29 (in Russian)

    Google Scholar 

  • Marois R, Carew TJ (1997a) Ontogeny of serotonergic neurons in Aplysia californica. J Comp Neurol 386:477–490

    Article  PubMed  CAS  Google Scholar 

  • Marois R, Carew TJ (1997b) Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biol Bull 192:388–398

    Article  PubMed  CAS  Google Scholar 

  • Marois R, Carew TJ (1997c) Projection patterns and target tissues of serotonergic cells in larval Aplysia californica. J Comp Neurol 386:491–506

    Article  PubMed  CAS  Google Scholar 

  • Marois R, Croll RP (1992) Development of serotonergic cells within the embryonic central nervous system of the pond snail, Lymnaea stagnalis. J Comp Neurol 322:255–265

    Article  PubMed  CAS  Google Scholar 

  • McAllister LB, Scheller R, Kandel ER, Axel R (1983) In situ hybridization to study the origin and fate of identified neurons. Science 222:800–808

    Article  PubMed  CAS  Google Scholar 

  • Mescheriakov VN (1990) The common pond snail Lymnaea stagnalis L. In: Dettlaff DA, Vassetzky SG (eds) Animal species for developmental studies. Plenum, New York, pp 69–132

    Google Scholar 

  • Moffet SB (1995) Neural regeneration in gastropod molluscs. Prog Neurobiol 46:289–330

    Article  Google Scholar 

  • Molist P, Rodríguez-Moldes I, Anadón R (1993) Organization of catecholaminergic systems in the hypothalamus of two elasmobranch species, Raja undulata and Scyliorhinus canicula. A histofluorescence and immunohistochemical study. Brain Behav Evol 41:290–302

    Article  PubMed  CAS  Google Scholar 

  • Nezlin LP, Voronezhskaya EE (2003) Novel, posterior sensory organ in the trochophore larvae of Phyllodoce maculata (Polychaeta). Proc R Soc Lond B 270:S159–S162

    Article  Google Scholar 

  • Nielsen C (2001) Animal evolution: interrelations of living phyla, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Orrhage L, Müller MCM (2005) Morphology of the nervous system of Polychaeta (Annelida). Hydrobiologia 535:79–111

    Article  Google Scholar 

  • Ospovat MF, Kulakovsky EE, Flyachinskaya LP (1989) Some aspects of detection of neurotransmitter systems in early development of the mussel Mytilus edulis. Proc Zool Inst Acad Sci USSR 203:76–83 (in Russian)

    Google Scholar 

  • Page LR (1993) Developmental analysis reveals labial and subradular ganglia and the primary framework of the nervous system in nudibranch gastropods. J Neurobiol 24:1443–1459

    Article  PubMed  CAS  Google Scholar 

  • Page LR (2002) Apical sensory organ in larvae of the patellogastropod Tectura scutum. Biol Bull 202:6–22

    Article  PubMed  Google Scholar 

  • Page LR, Parries SC (2000) Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin. J Comp Neurol 418:383–401

    Article  PubMed  CAS  Google Scholar 

  • Raineri M (1995) Is a mollusc an evolved bent metatrochophore? A histochemical investigation of neurogenesis in Mytilus (Mollusca: Bivalvia). J Mar Biol Ass UK 75:571–592

    Article  Google Scholar 

  • Raineri M, Ospovat M (1994) The initial development of gangliar rudiments in a posterior position in Mytilus galloprovincialis (Mollusca: Bivalvia). J Mar Biol Ass UK 74:73–77

    Google Scholar 

  • Raven CP (1966) Morphogenesis: the analysis of molluscan development. Pergamon, Oxford

    Google Scholar 

  • Riginos C, Cunningham CW (2005) Local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Mol Ecol 14:381–400

    Article  PubMed  CAS  Google Scholar 

  • Schacher S, Kandel ER, Woolley R (1979) Development of neurons in the abdominal ganglion of Aplysia californica. I. Axosomatic synaptic contacts. Dev Biol 71:163–175

    Article  PubMed  CAS  Google Scholar 

  • Schöler J, Armstrong WE (1982) Aqueous aldehyde (Faglu) histofluorescence for catecholamines in 2 μm sections using polyethylene glycol embedding. Brain Res Bull 9:27–31

    Article  PubMed  Google Scholar 

  • Suchanek TH, Geller JB, Kreiser BR, Mitton JB (1997) Zoogeographic distributions of the sibling species Mytilus galloprovincialis and M. trossulus (Bivalvia: Mytilidae) and their hybrids in the North Pacific. Biol Bull 193:187–194

    Article  Google Scholar 

  • Taylor JD (ed) (1996) Origin and evolutionary radiation of the Mollusca. Centenary symposium of the Malacological Society of London. Oxford University Press, Oxford

  • Voronezhskaya EE, Elekes K (1993) Distribution of serotonin-like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiology 1:371–383

    PubMed  CAS  Google Scholar 

  • Voronezhskaya EE, Elekes K (2003) Expression of the FMRFamide gene encoded peptides by identified neurons in embryos and juveniles of the pulmonate snail Lymnaea stagnalis. Cell Tissue Res 314:297–313

    Article  PubMed  CAS  Google Scholar 

  • Voronezhskaya EE, Hiripi L, Elekes K, Croll RP (1999) Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis I: embryonic development of dopaminergic neurons and dopamine-dependent behaviors. J Comp Neurol 404:297–309

    Article  PubMed  Google Scholar 

  • Voronezhskaya EE, Khabarova MY, Nezlin LP (2004) Apical sensory neurons mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails. Development 131:3671–3680

    Article  PubMed  CAS  Google Scholar 

  • Voronezhskaya EE, Tyurin SA, Nezlin LP (2002) Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol 444:25–38

    Article  PubMed  Google Scholar 

  • Voronezhskaya EE, Tsitrin EB, Nezlin LP (2003) Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). J Comp Neurol 455:299–309

    Article  PubMed  Google Scholar 

  • Wanninger A, Haszprunar G (2003) The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology 122:77–85

    Google Scholar 

Download references

Acknowledgments

The financial support of the Russian Foundation for Basic Research (RFBR) (Grants 06-04-96039 to NAO and 06-04-49401 to LPN), Far East Branch of the Russian Academy of Sciences Grant 06-II-CO-06-025 to NAO, Canadian Space Agency contract 9-02-359 and a Discovery Grant 38863-02 from the Natural Science and Engineering Research Council of Canada (NSERC) to RPC are gratefully acknowledged. We also thank Drs. Ellen Kenchington and Daniel Jackson at the Bedford Institute of Oceanography for supplying some of the larvae used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger P. Croll.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronezhskaya, E.E., Nezlin, L.P., Odintsova, N.A. et al. Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology 127, 97–110 (2008). https://doi.org/10.1007/s00435-007-0055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-007-0055-z

Keywords

Navigation