Skip to main content
Log in

NO/cGMP signalling: L-citrulline and cGMP immunostaining in the central complex of the desert locust Schistocerca gregaria

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a gaseous messenger molecule formed during conversion of L-arginine into L-citrulline by the enzyme NO synthase (NOS), which belongs to a group of NADPH diaphorases. Because of its gaseous diffusion properties, NO differs from classical neurotransmitters in that it is not restricted to synaptic terminals. In target cells, NO activates soluble guanylyl cyclase leading to an increase in cGMP levels. In insects, this NO/cGMP-signalling pathway is involved in development, memory formation and processing of visual, olfactory and mechanosensory information. We have analysed the distribution of putative NO donor and target cells in the central complex, a brain area involved in sky-compass orientation, of the locust Schistocerca gregaria by immunostaining for L-citrulline and cGMP. Six types of citrulline-immunostained neurons have been identified including a bilateral pair of hitherto undescribed neurons that connect the lateral accessory lobes with areas anterior to the medial lobes of the mushroom bodies. Three-dimensional reconstructions have revealed the connectivity pattern of a set of 18 immunostained pontine neurons of the central body. All these neurons appear to be a subset of previously mapped NADPH-diaphorase-positive neurons of the central complex. At least three types of central-complex neurons show cGMP immunostaining including a system of novel columnar neurons connecting the upper division of the central body and the lateral triangle of the lateral accessory lobe. Our results provide the morphological basis for further studies of the function of the labelled neurons and new insights into NO/cGMP signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CBL:

Lower division of the central body

CBU:

Upper division of the central body

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CPU1a:

Columnar (neuron) of the CBU, type 1a

DAB:

3,3'-Diaminobenzidine tetrahydrochloride

DP2:

Dopamine-immunoreactive (neuron) of the pars intercerebralis, type 2

GTP:

Guanosine trisphosphate

IBMX:

3-Isobutyl-1-methylxanthine (inhibitor of phosphodiesterases)

LAL:

Lateral accessory lobe

NADPH:

Reduced form of nicotinamide adenine dinucleotide phosphate

NADPHd:

NADPH diaphorase

NGS:

Normal goat serum

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PB:

Protocerebral bridge

PBS:

Phosphate-buffered saline

PDE:

Phosphodiesterase

POTu:

Posterior optic tubercle

PoU1:

Pontine (neuron) of the CBU, type 1

SNP:

Sodium nitroprusside (nitric oxide donor)

SST:

Saline substituted TRIS buffer

TB2:

Tangential (neuron) of the PB, type 2

TBS:

TRIS-buffered saline

TL1, 2, 4:

Tangential (neurons) of the CBL, types 1, 2, 4

TrX:

Triton X-100

YC-1:

3-[5′-Hyrdroxymethyl-2′-furyl]-1-benzyl indazole (activator of soluble guanylate cyclase)

References

  • Bellamy TC, Garthwaite J (2002) The receptor-like properties of nitric oxide-activated soluble guanylyl cyclase in intact cells. Mol Cell Biochem 230:165–176

    Article  PubMed  CAS  Google Scholar 

  • Bicker G (2001a) Nitric oxide: an unconventional messenger in the nervous system of an orthopteroid insect. Arch Insect Biochem Physiol 48:100–110

    Article  PubMed  CAS  Google Scholar 

  • Bicker G (2001b) Sources and targets of nitric oxide signalling in insect nervous systems. Cell Tissue Res 303:137–146

    Article  PubMed  CAS  Google Scholar 

  • Bicker G, Schmachtenberg O (1997) Cytochemical evidence for nitric oxide/cyclic GMP signal transmission in the visual system of the locust. Eur J Neurosci 9:189–193

    Article  PubMed  CAS  Google Scholar 

  • Blottner D, Grozdanovic Z, Gossrau R (1995) Histochemistry of nitric oxide synthase in the nervous system. Histochem J 27:785–811

    PubMed  CAS  Google Scholar 

  • Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS (2003) Nitric oxide signaling in brain: potentiating the gain with YC-1. Mol Pharmacol 63:1206–1208

    Article  PubMed  CAS  Google Scholar 

  • Clements AN, May TE (1974) Studies on locust neuromuscular physiology in relation to glutamic acid. J Exp Biol 60:673–705

    PubMed  CAS  Google Scholar 

  • Collmann C, Carlsson MA, Hansson BS, Nighorn A (2004) Odorant-evoked nitric oxide signals in the antennal lobe of Manduca sexta. J Neurosci 24:6070–6077

    Article  PubMed  CAS  Google Scholar 

  • Corbin JD, Francis SH (1999) Cyclic GMP phosphodiesterase-5: target of sildenafil. J Biol Chem 274:13729–13732

    Article  PubMed  CAS  Google Scholar 

  • Davies S-A (2000) Nitric oxide signalling in insects. Insect Biochem Mol Biol 30:1123–1138

    Article  PubMed  CAS  Google Scholar 

  • Davies S-A (2005) Signalling via cGMP: lessons from Drosophila. Cell Signal 18:409–421

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    PubMed  CAS  Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88:7797–7801

    Article  PubMed  CAS  Google Scholar 

  • Day JP, Dow JA, Houslay MD, Davies S-A (2005) Cyclic nucleotide phosphodiesterases in Drosophila melanogaster. Biochem J 388:333–342

    Article  PubMed  CAS  Google Scholar 

  • De Vente J, Steinbusch HWM, Schipper J (1987) A new approach to immunocytochemistry of 3’,5’-cyclic guanosine monophosphate: preparation, specificity, and initial application of a new antiserum against formaldehyde-fixed 3’,5’-cyclic guanosine monophosphate. Neuroscience 22:361–373

    Article  PubMed  Google Scholar 

  • Dircksen H, Homberg U (1995) Crustacean cardioactive peptide-immunoreactive neurons innervating brain neuropils, retrocerebral complex and stomatogastric nervous system of the locust, Locusta migratoria. Cell Tissue Res 279:495–515

    Article  CAS  Google Scholar 

  • Elphick MR, Rayne RC, Riveros-Moreno V, Moncada S, O’Shea M (1995) Nitric oxide synthesis in locust olfactory interneurones. J Exp Biol 198:821–829

    PubMed  CAS  Google Scholar 

  • Elphick MR, Williams L, O’Shea M (1996) New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision. J Exp Biol 199:2395–2407

    PubMed  CAS  Google Scholar 

  • Evers JF, Schmitt S, Sibila M, Duch C (2005) Progress in functional neuroanatomy: precise automatic geometric reconstruction of neuronal morphology from confocal image stacks. J Neurophysiol 93:2331–2342

    Article  PubMed  CAS  Google Scholar 

  • Flam BR, Eichler DC, Solomonson LP (2007) Endothelial nitric oxide production is tightly coupled to the citrulline-NO cycle. Nitric Oxide 17:115–121

    Article  PubMed  CAS  Google Scholar 

  • Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93:96–105

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  Google Scholar 

  • Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706

    Article  PubMed  CAS  Google Scholar 

  • Gibson NJ, Nighorn A (2000) Expression of nitric oxide synthase and soluble guanylyl cyclase in the developing olfactory system of Manduca sexta. J Comp Neurol 422:191–205

    Article  PubMed  CAS  Google Scholar 

  • Hanesch U, Fischbach K-F, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–366

    Article  Google Scholar 

  • Heinze S, Homberg U (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997

    Article  PubMed  CAS  Google Scholar 

  • Heinze S, Homberg U (2008) Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. J Comp Neurol 511:454–478

    Article  PubMed  Google Scholar 

  • Heinze S, Homberg U (2009) Linking the input to the output—new sets of neurons complement the polarization vision network in the locust central complex. J Neurosci 29:4911–4921

    Article  PubMed  CAS  Google Scholar 

  • Homberg U (1985) Interneurons of the central complex in the bee brain (Apis mellifera, L.). J Insect Physiol 31:251–264

    Article  Google Scholar 

  • Homberg U (1991) Neuroarchitecture of the central complex in the brain of the locust Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemistry. J Comp Neurol 303:245–254

    Article  PubMed  CAS  Google Scholar 

  • Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208

    Article  PubMed  CAS  Google Scholar 

  • Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88:2811–2814

    Article  PubMed  CAS  Google Scholar 

  • Jones IW, Elphick MR (1999) Dark-dependent soluble guanylyl cyclase activity in locust photoreceptor cells. Proc R Soc Lond [Biol] 266:413–419

    Article  CAS  Google Scholar 

  • Kasai H, Petersen OH (1994) Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci 17:95–101

    Article  PubMed  CAS  Google Scholar 

  • Ko FN, Wu CC, Kuo SC, Lee FY, Teng CM (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84:4226–4233

    PubMed  CAS  Google Scholar 

  • Koesling D, Russwurm M, Mergia E, Müllershausen F, Friebe A (2004) Nitric oxide-sensitive guanylyl cyclase: structure and regulation. Neurochem Int 45:813–819

    Article  PubMed  CAS  Google Scholar 

  • Krumenacker JS, Hanafy KA, Murad F (2004) Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res Bull 62:505–515

    Article  PubMed  CAS  Google Scholar 

  • Kurylas AE, Ott SR, Schachtner J, Elphick MR, Williams L, Homberg U (2005) Localization of nitric oxide synthase in the central complex and surrounding midbrain neuropils of the locust Schistocerca gregaria. J Comp Neurol 484:206–223

    Article  PubMed  Google Scholar 

  • Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U (2008) Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res 333:125–145

    Article  PubMed  Google Scholar 

  • Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556

    Article  PubMed  CAS  Google Scholar 

  • Martinelli GPT, Friedrich VL Jr, Hostein GR (2002) L-citrulline immunostaining identifies nitric oxide production sites within neurons. Neuroscience 114:111–122

    Article  PubMed  CAS  Google Scholar 

  • Mehats C, Andersen CB, Filopanti M, Jin SLC, Conti M (2002) Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab 13:29–35

    Article  PubMed  CAS  Google Scholar 

  • Müller U (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16:541–549

    Article  PubMed  Google Scholar 

  • Müller U (1997) The nitric oxide system in insects. Prog Neurobiol 51:363–381

    Article  PubMed  Google Scholar 

  • Müller U, Bicker G (1994) Calcium-activated release of nitric oxide and cellular distribution of nitric oxide-synthesizing neurons in the nervous system of the locust. J Neurosci 14:7521–7528

    PubMed  Google Scholar 

  • Müller U, Hildebrandt H (1995) The nitric oxide/cGMP system in the antennal lobe of Apis mellifera is implicated in integrative processing of chemosensory stimuli. Eur J Neurosci 7:2240–2248

    Article  PubMed  Google Scholar 

  • Neuser K, Triphan T, Mronz M, Poeck B, Strauss R (2008) Analysis of a spatial orientation memory in Drosophila. Nature 453:1244–1247

    Article  PubMed  CAS  Google Scholar 

  • O’Shea M, Colbert R, Williams L, Dunn S (1998) Nitric oxide compartments in the mushroom bodies of the locust brain. Neuroreport 9:333–336

    Article  PubMed  Google Scholar 

  • Ott SR, Burrows M (1998) Nitric oxide synthase in the thoracic ganglia of the locust: distribution in the neuropiles and morphology of neurones. J Comp Neurol 396:217–230

    Article  Google Scholar 

  • Ott SR, Elphick MR (2002) Nitric oxide synthase histochemistry in insect nervous systems: methanol/formalin fixation reveals the neuroarchitecture of formaldehyde-sensitive NADPH diaphorase in the cockroach Periplaneta americana. J Comp Neurol 448:165–185

    Article  PubMed  CAS  Google Scholar 

  • Ott SR, Jones IW, Burrows M, Elphick MR (2000) Sensory afferents and motor neurons as targets for nitric oxide in the locust. J Comp Neurol 422:521–532

    Article  PubMed  CAS  Google Scholar 

  • Ott SR, Burrows M, Elphick MR (2001) The neuroanatomy of nitric oxide-cyclic GMP signaling in the locust: functional implications for sensory systems. Am Zool 41:321–331

    Article  CAS  Google Scholar 

  • Ott SR, Delago A, Elphick MR (2004) An evolutionarily conserved mechanism for sensitization of soluble guanylyl cyclase reveals extensive nitric oxide-mediated upregulation of cyclic GMP in insect brain. Eur J Neurosci 20:1231–1244

    Article  PubMed  Google Scholar 

  • Ott SR, Philippides A, Elphick MR, O’Shea M (2007) Enhanced fidelity of diffuse nitric oxide signalling by the spatial segregation of source and target neurones in the memory centre of an insect brain. Eur J Neurosci 25:181–190

    Article  PubMed  Google Scholar 

  • Schachtner J, Klaassen L, Truman JW (1998) Metamorphic control of cyclic guanosine monophosphate expression in the nervous system of the tobacco hornworm, Manduca sexta. J Comp Neurol 396:238–252

    Article  PubMed  CAS  Google Scholar 

  • Schachtner J, Homberg U, Truman JW (1999) Regulation of cyclic GMP elevation in the developing antennal lobe of the sphinx moth, Manduca sexta. J Neurobiol 41:359–375

    Article  PubMed  CAS  Google Scholar 

  • Schipper J, Tilders FJH (1983) A new technique for studying specificity of immunocytochemical procedures: specificity of serotonin immunostaining. J Histochem Cytochem 31:12–18

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Heidelberg

    Google Scholar 

  • Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638

    Article  PubMed  CAS  Google Scholar 

  • Tanaka J, Markerink-van Ittersum M, Steinbusch HWM, De Vente J (1997) Nitric oxide-mediated cGMP synthesis in oligodendrocytes in the developing rat brain. Glia 19:286–297

    Article  PubMed  CAS  Google Scholar 

  • Vitzthum H, Homberg U (1998) Immunocytochemical demonstration of locustatachykinin-related peptides in the central complex of the locust brain. J Comp Neurol 390:455–469

    Article  PubMed  CAS  Google Scholar 

  • Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125

    PubMed  CAS  Google Scholar 

  • Wang Z, Pan Y, Li W, Jiang H, Chatzimanolis L, Chang J, Gong Z, Liu L (2008) Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem 15:133–142

    Article  PubMed  CAS  Google Scholar 

  • Weinrich A, Kunst M, Wirmer A, Holstein GR, Heinrich R (2008) Suppression of grasshopper sound production by nitric oxide-releasing neurons of the central complex. J Comp Physiol [A] 194:763–776

    Article  CAS  Google Scholar 

  • Wendt B, Homberg U (1992) Immunocytochemistry of dopamine in the brain of the locust Schistocerca gregaria. J Comp Neurol 321:387–403

    Article  PubMed  CAS  Google Scholar 

  • Wenzel B, Kunst M, Günther C, Ganter GK, Lakes-Harlan R, Elsner N, Heinrich R (2005) Nitric oxide/cyclic guanosine monophosphate signaling in the central complex of the grasshopper brain inhibits singing behavior. J Comp Neurol 488:129–139

    Article  PubMed  CAS  Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool (Lond) 176:67–86

    Article  Google Scholar 

  • Wilson CH, Christensen TA, Nighorn AJ (2007) Inhibition of nitric oxide and soluble guanylyl cyclase signaling affects olfactory neuron activity in the moth, Manduca sexta. J Comp Physiol [A] 193:715–728

    Article  CAS  Google Scholar 

  • Wood J, Garthwaite J (1994) Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 33:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Wu C-L, Xia S, Fu T-F, Wang H, Chen Y-H, Leong D, Chiang A-S, Tully T (2007) Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci 10:1578–1586

    Article  PubMed  CAS  Google Scholar 

  • Zayas RM, Qazi S, Morton DB, Trimmer BA (2002) Nicotinic-acetylcholine receptors are functionally coupled to the nitric oxide/cGMP-pathway in insect neurons. J Neurochem 83:421–431

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jan de Vente (Maastricht University, The Netherlands) for the generous gift of cGMP antiserum and Pfizer for the gift of sildenafil citrate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Homberg.

Additional information

This work was supported by DFG grant HO 950/16-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegl, T., Schachtner, J., Holstein, G.R. et al. NO/cGMP signalling: L-citrulline and cGMP immunostaining in the central complex of the desert locust Schistocerca gregaria . Cell Tissue Res 337, 327–340 (2009). https://doi.org/10.1007/s00441-009-0820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0820-z

Keywords

Navigation