Skip to main content
Log in

Neurogenesis of cephalic sensory organs of Aplysia californica

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The opisthobranch gastropod Aplysia californica serves as a model organism in experimental neurobiology because of its simple and well-known nervous system. However, its nervous periphery has been less intensely studied. We have reconstructed the ontogeny of the cephalic sensory organs (labial tentacles, rhinophores, and lip) of planktonic, metamorphic, and juvenile developmental stages. FMRFamide and serotonergic expression patterns have been examined by immunocytochemistry in conjunction with epifluorescence and confocal laser scanning microscopy. We have also applied scanning electron microscopy to analyze the ciliary distribution of these sensory epithelia. Labial tentacles and the lip develop during metamorphosis, whereas rhinophores appear significantly later, in stage 10 juveniles. Our study has revealed immunoreactivity against FMRFamides and serotonin in all major nerves. The common labial nerve develops first, followed by the labial tentacle base nerve, oral nerve, and rhinophoral nerve. We have also identified previously undescribed neuronal pathways and other FMRFamide-like-immunoreactive neuronal elements, such as peripheral ganglia and glomerulus-like structures, and two groups of conspicuous transient FMRFamide-like cell somata. We have further found two distinct populations of FMRFamide-positive cell somata located both subepidermally and in the inner regions of the cephalic sensory organs in juveniles. The latter population partly consists of sensory cells, suggesting an involvement of FMRFamide-like peptides in the modulation of peripheral sensory processes. This study is the first concerning the neurogenesis of cephalic sensory organs in A. californica and may serve as a basis for future studies of neuronal elements in gastropod molluscs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Audesirk TE (1975) Chemoreception in Aplysia californica. I. Behavioral localization of distance chemoreceptors used in food-finding. Behav Biol 15:45–55

    Article  PubMed  CAS  Google Scholar 

  • Bicker G, Davis WJ, Matera EM (1982) Chemoreception and mechanoreception in the gastropod mollusc Pleurobranchaea californica. II. Neuroanatomical and intracellular analysis of afferent pathways. J Comp Physiol 149:235–250

    Article  Google Scholar 

  • Boudko DY, Switzer-Dunlap M, Hadfield MG (1999) Cellular and subcellular structure of anterior sensory pathways in Phestilla sibogae (Gastropoda, Nudibranchia). J Comp Neurol 403:39–52

    Article  PubMed  CAS  Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer Associates, Sunderland, Mass., USA

    Google Scholar 

  • Buznikov GA, Nikitina LA, Voronezhskaya EE, Bezuglov VV, Willows AOD, Nezlin LP (2003) Localization of serotonin and its possible role in early embryos of Tritonia diomedea (Mollusca: Nudibranchia). Cell Tissue Res 311:259–266

    PubMed  CAS  Google Scholar 

  • Capo TR, Fieber LA, Stommes DL, Walsh PJ (2002) The effect of stocking density on growth rate and maturation time in laboratory-reared California sea hares. Contemp Top Lab Anim Sci 41:18–23

    PubMed  CAS  Google Scholar 

  • Carroll DJ, Kempf SC (1994) Changes occur in the central nervous system of the nudibranch Berghia verrucicornis (Mollusca, Opisthobranchia) during metamorphosis. Biol Bull 186:202–212

    Article  Google Scholar 

  • Cawthorpe D, Lukowiak K (1990) Dopamine and FMRFamide act directly on isolated gill muscle-fibers in culture. Neurosci Lett 113:345–348

    Article  PubMed  CAS  Google Scholar 

  • Chase R (1979) Photic sensitivity of the rhinophore in Aplysia. Can J Zool 57:698–701

    Google Scholar 

  • Chase R (1982) The olfactory sensitivity of snails, Achatina fulica. J Comp Physiol 148:225–235

    Article  CAS  Google Scholar 

  • Chase R (2002) Behavior and its neural control in gastropod molluscs. Oxford University, Oxford

    Google Scholar 

  • Chase R, Tolloczko B (1986) Synaptic glomeruli in the olfactory system of a snail, Achatina fulica. Cell Tissue Res 246:567–573

    Article  Google Scholar 

  • Chia FS, Koss R (1982) Fine structure of the larval rhinophores of the nudibranch, Rostanga pulchra, with emphasis on the sensory receptor cells. Cell Tissue Res 225:235–248

    Article  PubMed  CAS  Google Scholar 

  • Chia FS, Koss R (1984) Development and metamorphosis of the planktotrophic larvae of Rostanga pulchra (Mollusca: Nudibranchia). Mar Biol 46:109–119

    Article  Google Scholar 

  • Chiken S, Kuwasawa K, Kurokawa M, Ohsuga K (2001) Amino acid-induced reflexes and their neural pathways in an opisthobranch mollusc Pleurobranchaea japonica. Zool Sci 18:465–473

    Article  Google Scholar 

  • Cottrell GA (1989) The biology of the FMRFamide-series of peptides in molluscs with special reference to Helix. Comp Biochem Physiol 93A:41–45

    Article  CAS  Google Scholar 

  • Croll RP (1983) Gastropod chemoreception. Biol Rev 58:293–319

    Google Scholar 

  • Croll RP (1988) Distribution of monoamines within the central nervous system of the juvenile pulmonate snail, Achatina fulica. Brain Res 460:29–49

    Article  PubMed  CAS  Google Scholar 

  • Croll RP (2001) Catecholamine-containing cells in the central nervous system and periphery of Aplysia californica. J Comp Neurol 441:91–105

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Lo RYS (1986) Distribution of serotonin-like immunoreactivity in the central nervous system of the periwinkle, Littorina littorea (Gastropoda, Prosobranchia, Mesogastropoda). Biol Bull 171:426–440

    Article  CAS  Google Scholar 

  • Croll RP, Voronezhskaya EE, Hiripi L, Elekes K (1999) Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis. II. Postembryonic development of central and peripheral cells. J Comp Neurol 404:297–309

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Boudko DY, Hadfield MG (2001) Histochemical survey of transmitters in the central ganglia of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 305:417–432

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Boudko DY, Pires A, Hadfield MG (2003) Transmitter contents of cells and fibers in the cephalic sensory organs of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 314:437–448

    Article  PubMed  CAS  Google Scholar 

  • Dickinson AJG, Croll RP (2003) Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J Comp Neurol 466:197–218

    Article  PubMed  Google Scholar 

  • Dickinson AJG, Croll RP, Voronezhskaya EE (2000) Development of embryonic cells containing serotonin, catecholamines, and FMRFamide-related peptides in Aplysia californica. Biol Bull 199:305–315

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach TJ, Koss R, Goldberg JI (1998) Early development of an identified serotonergic neuron in Helisoma trivolis embryos: serotonin expression, de-expression, and uptake. J Neurobiol 34:361–376

    Article  PubMed  CAS  Google Scholar 

  • Elekes K, Nässel DR (1990) Distribution of FMRFamide-like immunoreactive neurons in the central nervous system of the snail Helix pomatia. Cell Tissue Res 262:177–190

    Article  CAS  Google Scholar 

  • Emery DG, Audesirk TE (1978) Sensory cells in Aplysia. J Neurobiol 9:173–179

    Article  PubMed  CAS  Google Scholar 

  • Evans CG, Vilim FS, Harish O, Kupfermann I, Weiss KR, Cropper EC (1999) Modulation of radula opener muscles in Aplysia. J Neurophysiol 82:1339–1351

    PubMed  CAS  Google Scholar 

  • Fabian R, Seyfarth E-A (1997) Acetylcholine and histamine are transmitter candidates in identifiable mechanosensitive neurons of the spider Cupiennius salei: an immunocytochemical study. Cell Tissue Res 287:413–423

    Article  PubMed  CAS  Google Scholar 

  • Friedrich S, Wanninger A, Bruckner M, Haszprunar G (2002) Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): evidence against molluscan metamerism. J Morphol 253:109–117

    Article  PubMed  Google Scholar 

  • Gelperin A (1974) Olfactory basis of homing behavior in giant garden slug, Limax maximus. Proc Natl Acad Sci USA 71:966–970

    Article  PubMed  Google Scholar 

  • Gesser BP, Larsson LI (1985) Changes from enkephalin-like to gastrin/cholecystokinin-like immunreactivity in snail neurons. J Neurosci 5:1412–1417

    PubMed  CAS  Google Scholar 

  • Giloh H, Sedat JW (1982) Fluorescence microscopy—reduced photobleaching of rhodamine and fluorescein protein conjugates by normal-propyl gallate. Science 217:1252–1255

    Article  PubMed  CAS  Google Scholar 

  • Greenberg MJ, Price DA (1992) Relationships among the FMRFamide-like peptides. Prog Brain Res 92:25–37

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JG (1995) Analysis of chemical signals by nervous systems. Proc Natl Acad Sci USA 92:67–74

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    Article  PubMed  CAS  Google Scholar 

  • Jacklet JW (1980) Light sensitivity of the rhinophores and eyes of Aplysia. J Comp Physiol 136:257–262

    Article  Google Scholar 

  • Jahan-Parwar B (1972) Behavioral and electrophysiological studies on chemoreception in Aplysia. Am Zool 12:27–37

    Google Scholar 

  • Jing J, Gillette R (1999) Central pattern generator for escape swimming in the notaspid sea slug Pleurobranchaea californica. J Neurophysiol 81:654–667

    PubMed  CAS  Google Scholar 

  • Jing J, Gillette R (2000) Escape swim network interneurons have diverse roles in behavioral switching and putative arousal in Pleurobranchaea. J Neurophysiol 83:1346–1355

    PubMed  CAS  Google Scholar 

  • Kandel ER (1979) Behavioral biology of Aplysia. Freeman, San Francisco

    Google Scholar 

  • Kandel ER, Kriegstein A, Schacher S (1980) Development of the central nervous system of Aplysia in terms of the differentiation of its specific identifiable cells. Neuroscience 5:2033–2063

    Article  PubMed  CAS  Google Scholar 

  • Katz PS, Fickbohm DJT, Lynn-Bullock CP (2001) Evidence that the central pattern generator for swimming in Tritonia arose from a non-rhythmic neuromodulatory arousal system: implications for the evolution of specialized behavior. Am Zool 41:962–975

    Article  Google Scholar 

  • Kempf SC, Page LR (2005) Anti-tubulin labeling reveals ampullary neuron ciliary bundles in opisthobranch larvae and a new putative neural structure associated with the apical ganglion. Biol Bull 208:169–182

    Article  PubMed  Google Scholar 

  • Kempf SC, Page LR, Pires A (1997) Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J Comp Neurol 386:507–528

    Article  PubMed  CAS  Google Scholar 

  • Korsching S (2002) Olfactory maps and odor images. Curr Opin Neurobiol 12:387–392

    Article  PubMed  CAS  Google Scholar 

  • Kreiling JA, Jessen-Eller K, Miller J, Seegal RF, Reinisch CL (2002) Early development of the serotonergic and dopaminergic nervous system in Spisula solidissima (surf clam) larvae. Comp Biochem Physiol [A] Mol Integr Physiol 130:341–351

    Article  Google Scholar 

  • Kriegstein AR (1977a) Stages in the post-hatching development of Aplysia californica. J Exp Zool 199:275–288

    Article  PubMed  CAS  Google Scholar 

  • Kriegstein AR (1977b) Development of the nervous system of Aplysia californica. Proc Natl Acad Sci USA 74:375–378

    Article  PubMed  CAS  Google Scholar 

  • Lee RM, Liegeois RJ (1974) Motor and sensory mechanisms of feeding in Pleurobranchaea. J Neurobiol 5:545–564

    Article  PubMed  CAS  Google Scholar 

  • Lehman HK, Greenberg MJ (1987) The actions of FMRFamide-like peptides on visceral and somatic muscles of the snail Helix aspersa. J Exp Biol 131:55–68

    PubMed  CAS  Google Scholar 

  • Lei H, Christensen TA, Hildebrand JG (2002) Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons. Nat Neurosci 5:557–565

    Article  PubMed  CAS  Google Scholar 

  • Longley RD, Longley AJ (1986) Serotonin immunoreactivity of neurons in the gastropod Aplysia californica. J Neurobiol 17:339–358

    Article  PubMed  CAS  Google Scholar 

  • Marois R, Carew TJ (1997a) Ontogeny of serotonergic neurons in Aplysia californica. J Comp Neurol 386:477–490

    Article  PubMed  CAS  Google Scholar 

  • Marois R, Carew TJ (1997b) Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biol Bull 192:388–398

    Article  PubMed  CAS  Google Scholar 

  • Marois R, Carew TJ (1997c) Projection patterns and target tissues of the serotonergic cells in larval Aplysia californica. J Comp Neurol 386:491–506

    Article  PubMed  CAS  Google Scholar 

  • Merton H (1920) Untersuchungen über die Hautsinnesorgane der Mollusken. I. Opisthobranchia. Abh Senckenb Naturforsch Ges 36:148–175

    Google Scholar 

  • Moroz LL (2006) Localization of putative nitrergic neurons in peripheral chemosensory areas and the central nervous system of Aplysia californica. J Comp Neurol 495:10–20

    Article  PubMed  CAS  Google Scholar 

  • Moroz LL, Sudlow LC, Jing J, Gillette R (1997) Serotonin-immunoreactivity in peripheral tissues of the opisthobranch molluscs Pleurobranchaea californica and Tritonia diomedea. J Comp Neurol 382:176–188

    Article  PubMed  CAS  Google Scholar 

  • Murray JA, Willows AOD (1996) Function of identified nerves in orientation to water flow in Tritonia diomedea. J Comp Physiol 176A:201–209

    Google Scholar 

  • Newcomb JM, Fickbohm DJ, Katz PS (2006) Comparative mapping of serotonin-immunoreactive neurons in the central nervous systems of nudibranch molluscs. J Comp Neurol 499:485–505

    Article  PubMed  Google Scholar 

  • Page LR (2002) Apical sensory organ in larvae of the patellogastropod Tectura scutum. Biol Bull 202:6–22

    Article  PubMed  Google Scholar 

  • Price DA, Greenberg MJ (1977) Purification and characterization of a cardio-excitatory neuropeptide from the central ganglia of a bivalve mollusc. Prep Biochem 7:50–62

    Google Scholar 

  • Ram JL, Shukla UA, Ajimal GS (1981) Serotonin has both excitatory and inhibitory modulatory effects on feeding muscles in Aplysia. J Neurobiol 12:613–621

    Article  PubMed  CAS  Google Scholar 

  • Richmond JE, Bulloch AGM, Lukowiak K (1986) Peptidergic modulation of a neuromuscular-junction in Aplysia—bioactivity and immunocytochemistry. Brain Res 370:159–164

    Article  PubMed  CAS  Google Scholar 

  • Rudman WB, Willan RC (1998) Opisthobranchia. The southern synthesis. Fauna of Australia. CSIRO, Melbourne

    Google Scholar 

  • Shepherd GM (1972) Synaptic organization of mammalian olfactory bulb. Physiol Rev 52:864–917

    PubMed  CAS  Google Scholar 

  • Sudlow LC, Jing J, Moroz LL, Gillette R (1998) Serotonin immunoreactivity in the central nervous system of the marine molluscs Pleurobranchaea californica and Tritonia diomedea. J Comp Neurol 395:466–480

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Kimura T, Sekiguchi T, Mizukami A (1997) FMRFamide-like-immunoreactive primary sensory neurons in the olfactory system of the terrestrial mollusc, Limax marginatus. Cell Tissue Res 289:339–345

    Article  PubMed  CAS  Google Scholar 

  • Twarog BM (1954) Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J Cell Comp Physiol 44:141–163

    Article  CAS  Google Scholar 

  • Walker RJ (1986) Transmitters and modulators. In: Willows AOD (ed) Neurobiology and behavior. The Mollusca. Academic Press, Orlando, pp 279–485

    Google Scholar 

  • Wanninger A, Haszprunar G (2003) Development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology 122:77–85

    Google Scholar 

  • Weiss KR, Cohen JL, Kupfermann I (1978) Modulatory control of buccal musculature by a serotonergic neuron (metacerebral cell) in Aplysia. J Neurophysiol 41:181–203

    PubMed  CAS  Google Scholar 

  • Wyeth RC, Willows AOD (2006) Odours detected by rhinophores mediate orientation to flow in the nudibranch mollusc, Tritonia diomedea. J Exp Biol 209:1441–1453

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Marion Stöhr and Manfred Ruppel (Frankfurt) and to Bjarne Bisballe, Henrike Semmler, and Judith Fuchs (Copenhagen) for technical assistance. They also thank Sid Staubach (Frankfurt) and Roger Croll (Halifax) for valuable comments, and Adrienne Jochum (Frankfurt) for proof reading. T.W. is grateful to Patrick J. Walsh, Lynne A. Fieber and Tom R. Capo for the use of their lab facilities. Finally, the authors thank Volker Hartenstein and three anonymous reviewers, whose valuable comments improved an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Wollesen.

Additional information

This work was supported by the German Science Foundation (DFG; Kl 1303/3-1 to A.K.K.), SYNTHESYS (DK-TAF-202 to T.W.), the German Academic Exchange Service (DAAD to T.W.), the Danish Natural Science Research Council (FNU; grants 21-04-0356 and 272-05-0174 to A.W.), and the Carlsberg Foundation (grant 2005-1-249 to A.W.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollesen, T., Wanninger, A. & Klussmann-Kolb, A. Neurogenesis of cephalic sensory organs of Aplysia californica . Cell Tissue Res 330, 361–379 (2007). https://doi.org/10.1007/s00441-007-0460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0460-0

Keywords

Navigation