Skip to main content

Advertisement

Log in

Transposable elements in disease-associated cryptic exons

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) make up a half of the human genome, but the extent of their contribution to cryptic exon activation that results in genetic disease is unknown. Here, a comprehensive survey of 78 mutation-induced cryptic exons previously identified in 51 disease genes revealed the presence of TEs in 40 cases (51%). Most TE-containing exons were derived from short interspersed nuclear elements (SINEs), with Alus and mammalian interspersed repeats (MIRs) covering >18 and >16% of the exonized sequences, respectively. The majority of SINE-derived cryptic exons had splice sites at the same positions of the Alu/MIR consensus as existing SINE exons and their inclusion in the mRNA was facilitated by phylogenetically conserved changes that improved both traditional and auxiliary splicing signals, thus marking intronic TEs amenable for pathogenic exonization. The overrepresentation of MIRs among TE exons is likely to result from their high average exon inclusion levels, which reflect their strong splice sites, a lack of splicing silencers and a high density of enhancers, particularly (G)AA(G) motifs. These elements were markedly depleted in antisense Alu exons, had the most prominent position on the exon–intron gradient scale and are proposed to promote exon definition through enhanced tertiary RNA interactions involving unpaired (di)adenosines. The identification of common mechanisms by which the most dynamic parts of the genome contribute both to new exon creation and genetic disease will facilitate detection of intronic mutations and the development of computational tools that predict TE hot-spots of cryptic exon activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TE:

Transposable element

MIR:

Mammalian interspersed repeat

SINE:

Short interspersed nuclear element

LINE:

Long interspersed nuclear element

ESE:

Exonic splicing enhancer

ESS:

Exonic splicing silencer

BPS:

Branch point sequence

PPT:

Polypyrimidine tract

Del:

Deletion

Ins:

Insertion

ME:

Maximum entropy

IVS:

Intervening sequence or intron

NI:

Neighborhood inference

EIE:

Exon identity element

IIE:

Intron identity element

References

  • Agalarov SC, Sridhar Prasad G, Funke PM, Stout CD, Williamson JR (2000) Structure of the S15, S6, S18-rRNA complex: assembly of the 30S ribosome central domain. Science 288:107–113

    Article  PubMed  CAS  Google Scholar 

  • Alves S, Mangas M, Prata MJ, Ribeiro G, Lopes L, Ribeiro H, Pinto-Basto J, Lima MR, Lacerda L (2006) Molecular characterization of Portuguese patients with mucopolysaccharidosis type II shows evidence that the IDS gene is prone to splicing mutations. J Inherit Metab Dis 29:743–754

    Article  PubMed  CAS  Google Scholar 

  • Ars E, Serra E, de la Luna S, Estivill X, Lazaro C (2000) Cold shock induces the insertion of a cryptic exon in the neurofibromatosis type 1 (NF1) mRNA. Nucleic Acids Res 28:1307–1312

    Article  PubMed  CAS  Google Scholar 

  • Aznarez I, Chan EM, Zielenski J, Blencowe BJ, Tsui LC (2003) Characterization of disease-associated mutations affecting an exonic splicing enhancer and two cryptic splice sites in exon 13 of the cystic fibrosis transmembrane conductance regulator gene. Hum Mol Genet 12:2031–2040

    Article  PubMed  CAS  Google Scholar 

  • Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270:2411–2414

    PubMed  CAS  Google Scholar 

  • Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 9:474

    Article  PubMed  CAS  Google Scholar 

  • Beroud C, Carrie A, Beldjord C, Deburgrave N, Llense S, Carelle N, Peccate C, Cuisset JM, Pandit F, Carre-Pigeon F et al (2004) Dystrophinopathy caused by mid-intronic substitutions activating cryptic exons in the DMD gene. Neuromuscul Disord 14:10–18

    Article  PubMed  Google Scholar 

  • Biemont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  CAS  Google Scholar 

  • Borensztajn K, Sobrier ML, Duquesnoy P, Fischer AM, Tapon-Bretaudiere J, Amselem S (2006) Oriented scanning is the leading mechanism underlying 5′ splice site selection in mammals. PLoS Genet 2:e138

    Article  PubMed  CAS  Google Scholar 

  • Bournay AS, Hedley PE, Maddison A, Waugh R, Machray GC (1996) Exon skipping induced by cold stress in a potato invertase gene transcript. Nucleic Acids Res 24:2347–2351

    Article  PubMed  CAS  Google Scholar 

  • Bowen NJ, Jordan IK (2007) Exaptation of protein coding sequences from transposable elements. Genome Dyn 3:147–162

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Baron WF, Stout DB, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85:4770–4774

    Article  PubMed  CAS  Google Scholar 

  • Buratti E, Muro AF, Giombi M, Gherbassi D, Iaconcig A, Baralle FE (2004) RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol Cell Biol 24:1387–1400

    Article  PubMed  CAS  Google Scholar 

  • Buratti E, Baralle M, Baralle FE (2006) Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res 34:3494–3510

    Article  PubMed  CAS  Google Scholar 

  • Buratti E, Chivers MC, Kralovicova J, Romano M, Baralle M, Krainer AR, Vorechovsky I (2007) Aberrant 5′ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 35:4250–4263

    Article  PubMed  CAS  Google Scholar 

  • Busslinger M, Moschonas N, Flavell RA (1981) Beta+ thalassemia: aberrant splicing results from a single point mutation in an intron. Cell 27:289–298

    Article  PubMed  CAS  Google Scholar 

  • Buvoli M, Buvoli A, Leinwand LA (2007) Interplay between exonic splicing enhancers, mRNA processing, and mRNA surveillance in the dystrophic Mdx mouse. PLoS ONE 2:e427

    Article  PubMed  CAS  Google Scholar 

  • Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115

    Article  PubMed  CAS  Google Scholar 

  • Carmel I, Tal S, Vig I, Ast G (2004) Comparative analysis detects dependencies among the 5′ splice-site positions. RNA 10:828–840

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    Article  PubMed  CAS  Google Scholar 

  • Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Szewczak AA, Kundrot CE, Cech TR, Doudna JA (1996) RNA tertiary structure mediation by adenosine platforms. Science 273:1696–1699

    Article  PubMed  CAS  Google Scholar 

  • Cooper DN, Krawczak M (1993) Human gene mutation. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Correll CC, Swinger K (2003) Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 Å resolution. RNA 9:355–363

    Article  PubMed  CAS  Google Scholar 

  • Corvelo A, Eyras E (2008) Exon creation and establishment in human genes. Genome Biol 9:R141

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Michel F (1995) Frequent use of the same tertiary motif by self-folding RNAs. EMBO J 14:1276–1285

    PubMed  CAS  Google Scholar 

  • Costa M, Deme E, Jacquier A, Michel F (1997) Multiple tertiary interactions involving domain II of group II self-splicing introns. J Mol Biol 267:520–536

    Article  PubMed  CAS  Google Scholar 

  • Coulter LR, Landree MA, Cooper TA (1997) Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol 17:2143–2150

    PubMed  CAS  Google Scholar 

  • Davis RL, Homer VM, George PM, Brennan SO (2008) A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment. Hum Mutat 30:221–227

    Article  CAS  Google Scholar 

  • De Klein A, Riegman PH, Bijlsma EK, Heldoorn A, Muijtjens M, den Bakker MA, Avezaat CJ, Zwarthoff EC (1998) A G > A transition creates a branch point sequence and activation of a cryptic exon, resulting in the hereditary disorder neurofibromatosis 2. Hum Mol Genet 7:393–398

    Article  PubMed  Google Scholar 

  • Dehainault C, Michaux D, Pages-Berhouet S, Caux-Moncoutier V, Doz F, Desjardins L, Couturier J, Parent P, Stoppa-Lyonnet D, Gauthier-Villars M et al (2007) A deep intronic mutation in the RB1 gene leads to intronic sequence exonisation. Eur J Hum Genet 15:473–477

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193

    Article  PubMed  CAS  Google Scholar 

  • Divina P, Kvitkovicova A, Vorechovsky I (2009) Ab initio prediction of cryptic splice-site activation and exon skipping. Eur J Hum Genet 17:759–765

    Google Scholar 

  • Dogan RI, Getoor L, Wilbur WJ, Mount SM (2007) Features generated for computational splice-site prediction correspond to functional elements. BMC Bioinformatics 8:410

    Article  PubMed  CAS  Google Scholar 

  • Doherty EA, Batey RT, Masquida B, Doudna JA (2001) A universal mode of helix packing in RNA. Nat Struct Biol 8:339–343

    Article  PubMed  CAS  Google Scholar 

  • Dominski Z, Kole R (1994) Identification of exon sequences involved in splice site selection. J Biol Chem 269:23590–23596

    PubMed  CAS  Google Scholar 

  • Downs WD, Cech TR (1994) A tertiary interaction in the Tetrahymena intron contributes to selection of the 5′ splice site. Genes Dev 8:1198–1211

    Article  PubMed  CAS  Google Scholar 

  • Elgavish T, Cannone JJ, Lee JC, Harvey SC, Gutell RR (2001) AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices. J Mol Biol 310:735–753

    Article  PubMed  CAS  Google Scholar 

  • Fairbrother WG, Chasin LA (2000) Human genomic sequences that inhibit splicing. Mol Cell Biol 20:6816–6825

    Article  PubMed  CAS  Google Scholar 

  • Fairbrother WG, Yeo GW, Yeh R, Goldstein P, Mawson M, Sharp PA, Burge CB (2004) RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res 32:W187–W190

    Article  PubMed  CAS  Google Scholar 

  • Galiana-Arnoux D, Lejeune F, Gesnel MC, Stevenin J, Breathnach R, Del Gatto-Konczak F (2003) The CD44 alternative v9 exon contains a splicing enhancer responsive to the SR proteins 9G8, ASF/SF2, and SRp20. J Biol Chem 278:32943–32953

    Article  PubMed  CAS  Google Scholar 

  • Gal-Mark N, Schwartz S, Ast G (2008) Alternative splicing of Alu exons—two arms are better than one. Nucleic Acids Res 36:2012–2023

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR (2008) The haplo-spliceo-transcriptome: common variations in alternative splicing in the human population. Trends Genet 24:5–7

    Article  PubMed  CAS  Google Scholar 

  • Gruber AR, Neubock R, Hofacker IL, Washietl S (2007) The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures. Nucleic Acids Res 35:W335–W338

    Article  PubMed  Google Scholar 

  • Gurvich OL, Tuohy TM, Howard MT, Finkel RS, Medne L, Anderson CB, Weiss RB, Wilton SD, Flanigan KM (2008) DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy. Ann Neurol 63:81–89

    Article  PubMed  CAS  Google Scholar 

  • Gutell RR, Weiser B, Woese CR, Noller HF (1985) Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–216

    Article  PubMed  CAS  Google Scholar 

  • Gutell RR, Cannone JJ, Shang Z, Du Y, Serra MJ (2000) A story: unpaired adenosine bases in ribosomal RNAs. J Mol Biol 304:335–354

    Article  PubMed  CAS  Google Scholar 

  • Hainzl T, Huang S, Sauer-Eriksson AE (2005) Structural insights into SRP RNA: an induced fit mechanism for SRP assembly. RNA 11:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Casalunovo T, Taback SP, Frackelton EC et al (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448:591–594

    Article  PubMed  CAS  Google Scholar 

  • Hasler J, Strub K (2006) Alu elements as regulators of gene expression. Nucleic Acids Res 34:5491–5497

    Article  PubMed  CAS  Google Scholar 

  • Heus HA, Pardi A (1991) Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253:191–194

    Article  PubMed  CAS  Google Scholar 

  • Hiller M, Zhang Z, Backofen R, Stamm S (2007) Pre-mRNA secondary structures influence exon recognition. PLoS Genet 3:e204

    Article  PubMed  CAS  Google Scholar 

  • Hirao I, Kawai G, Kobayashi K, Nishimura Y, Miura K, Watanabe K, Ishido Y (1992) Stability difference between DNA and RNA mini-hairpins containing two G–C pairs. Nucleic Acids Symp Ser 27:127–128

    Google Scholar 

  • Holbrook SR (2008) Structural principles from large RNAs. Annu Rev Biophys 37:445–464

    Article  PubMed  CAS  Google Scholar 

  • Huizing M, Anikster Y, Fitzpatrick DL, Jeong AB, D’Souza M, Rausche M, Toro JR, Kaiser-Kupfer MI, White JG, Gahl WA (2001) Hermansky-Pudlak syndrome type 3 in Ashkenazi Jews and other non-Puerto Rican patients with hypopigmentation and platelet storage-pool deficiency. Am J Hum Genet 69:1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Matsubara Y, Mikami H, Kure S, Owada M, Gough T, Smooker PM, Dobbs M, Dahl HH, Cotton RG et al (1997) Molecular analysis of dihydropteridine reductase deficiency: identification of two novel mutations in Japanese patients. Hum Genet 100:637–642

    Article  PubMed  CAS  Google Scholar 

  • Ishii S, Nakao S, Minamikawa-Tachino R, Desnick RJ, Fan JQ (2002) Alternative splicing in the alpha-galactosidase A gene: increased exon inclusion results in the Fabry cardiac phenotype. Am J Hum Genet 70:994–1002

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Tang H, Havlioglu N, Zhang X, Stamm S, Yan R, Wu JY (2003) Mutations in tau gene exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2 beta. J Biol Chem 278:18997–19007

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Kohany O, Pavlicek A, Kapitonov VV, Jurka MV (2004) Duplication, coclustering, and selection of human Alu retrotransposons. Proc Natl Acad Sci USA 101:1268–1272

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Kapitonov VV, Kohany O, Jurka MV (2007) Repetitive sequences in complex genomes: structure and evolution. Ann Rev Genomics Hum Genet 8:241–259

    Article  CAS  Google Scholar 

  • Keating KS, Toor N, Pyle AM (2008) The GANC tetraloop: a novel motif in the group IIC intron structure. J Mol Biol 383:475–481

    Article  PubMed  CAS  Google Scholar 

  • Knebelmann B, Forestier L, Drouot L, Quinones S, Chuet C, Benessy F, Saus J, Antignac C (1995) Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum Mol Genet 4:675–679

    Article  PubMed  CAS  Google Scholar 

  • Kol G, Lev-Maor G, Ast G (2005) Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation. Hum Mol Genet 14:1559–1568

    Article  PubMed  CAS  Google Scholar 

  • Kralovicova J, Vorechovsky I (2007) Global control of aberrant splice site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res 35:6399–6413

    Article  PubMed  CAS  Google Scholar 

  • Kralovicova J, Houngninou-Molango S, Krämer A, Vorechovsky I (2004) Branch sites haplotypes that control alternative splicing. Hum Mol Genet 13:3189–3202

    Article  PubMed  CAS  Google Scholar 

  • Krull M, Petrusma M, Makalowski W, Brosius J, Schmitz J (2007) Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res 17:1139–1145

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lavigueur A, La Branche H, Kornblihtt AR, Chabot B (1993) A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev 7:2405–2417

    Article  PubMed  CAS  Google Scholar 

  • Lebon S, Minai L, Chretien D, Corcos J, Serre V, Kadhom N, Steffann J, Pauchard JY, Munnich A, Bonnefont JP et al (2007) A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome. Mol Genet Metab 92:104–108

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Gutell RR, Russell R (2006) The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions. J Mol Biol 360:978–988

    Article  PubMed  CAS  Google Scholar 

  • Lejeune F, Cavaloc Y, Stevenin J (2001) Alternative splicing of intron 3 of the serine/arginine-rich protein 9G8 gene. Identification of flanking exonic splicing enhancers and involvement of 9G8 as a trans-acting factor. J Biol Chem 276:7850–7858

    Article  PubMed  CAS  Google Scholar 

  • Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, Elghalbzouri-Maghrani E, Steltenpool J, Rooimans MA, Pals G et al (2005) The DNA helicase BRIP1 is defective in Fanconi anemia complementation group. J Nat Genet 37:934–935

    Article  CAS  Google Scholar 

  • Lev-Maor G, Sorek R, Shomron N, Ast G (2003) The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300:1288–1291

    Article  PubMed  CAS  Google Scholar 

  • Lev-Maor G, Ram O, Kim E, Sela N, Goren A, Levanon EY, Ast G (2008) Intronic Alus influence alternative splicing. PLoS Genet 4:e1000204

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Sela N, Ast G (2008) TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates. Nucleic Acids Res 36:D47–D52

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Mertz JE (1995) HnRNP L binds a cis-acting RNA sequence element that enables intron-dependent gene expression. Genes Dev 9:1766–1780

    Article  PubMed  CAS  Google Scholar 

  • Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12:1998–2012

    Article  PubMed  CAS  Google Scholar 

  • Long M, Rosenberg C, Gilbert W (1995) Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci USA 92:12495–12499

    Article  PubMed  CAS  Google Scholar 

  • Lynch KW, Maniatis T (1996) Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev 10:2089–2101

    Article  PubMed  CAS  Google Scholar 

  • Madhani HD, Guthrie C (1994) Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev 8:1071–1086

    Article  PubMed  CAS  Google Scholar 

  • Makalowski W, Mitchell GA, Labuda D (1994) Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet 10:188–193

    Article  PubMed  CAS  Google Scholar 

  • Martinez MA, Rincon A, Desviat LR, Merinero B, Ugarte M, Perez B (2005) Genetic analysis of three genes causing isolated methylmalonic acidemia: identification of 21 novel allelic variants. Mol Genet Metab 84:317–325

    Article  PubMed  CAS  Google Scholar 

  • Mathews DH (2006) RNA secondary structure analysis using RNA structure. Curr Protoc Bioinformatics. doi:10.1002/0471250953.bi1206s13

  • Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol 16:270–278

    Google Scholar 

  • Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101:7287–7292

    Article  PubMed  CAS  Google Scholar 

  • McVety S, Li L, Gordon PH, Chong G, Foulkes WD (2006) Disruption of an exon splicing enhancer in exon 3 of MLH1 is the cause of HNPCC in a Quebec family. J Med Genet 43:153–156

    Article  PubMed  CAS  Google Scholar 

  • Meili D, Kralovicova J, Zagalak J, Bonafe L, Fiori L, Blau N, Thony B, Vorechovsky I (2009) Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail. Hum Mutat 30:823–831

    Google Scholar 

  • Michel F, Costa M, Westhof E (2009) The ribozyme core of group II introns: a structure in want of partners. Trends Biochem Sci 34:189–199

    Article  PubMed  CAS  Google Scholar 

  • Mitchell GA, Labuda D, Fontaine G, Saudubray JM, Bonnefont JP, Lyonnet S, Brody LC, Steel G, Obie C, Valle D (1991) Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc Natl Acad Sci USA 88:815–819

    Article  PubMed  CAS  Google Scholar 

  • Moseley CT, Mullis PE, Prince MA, Phillips JA 3rd (2002) An exon splice enhancer mutation causes autosomal dominant GH deficiency. J Clin Endocrinol Metab 87:847–852

    Article  PubMed  CAS  Google Scholar 

  • Muro AF, Caputi M, Pariyarath R, Pagani F, Buratti E, Baralle FE (1999) Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display. Mol Cell Biol 19:2657–2671

    PubMed  CAS  Google Scholar 

  • Murphy FL, Cech TR (1994) GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J Mol Biol 236:49–63

    Article  PubMed  CAS  Google Scholar 

  • Nagel RJ, Lancaster AM, Zahler AM (1998) Specific binding of an exonic splicing enhancer by the pre-mRNA splicing factor SRp55. RNA 4:11–23

    PubMed  CAS  Google Scholar 

  • Nagoshi RN, Baker BS (1990) Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns. Genes Dev 4:89–97

    Article  PubMed  CAS  Google Scholar 

  • Nembaware V, Wolfe KH, Bettoni F, Kelso J, Seoighe C (2004) Allele-specific transcript isoforms in human. FEBS Lett 577:233–238

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci USA 98:4899–4903

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Takahashi M, Sakamoto T, Kawai G, Nakamura K, Kanai A (2006) Solution structure of a GAAG tetraloop in helix 6 of SRP RNA from Pyrococcus furiosus. Nucleosides Nucleotides Nucleic Acids 25:383–395

    Article  PubMed  CAS  Google Scholar 

  • Olsson A, Lind L, Thornell LE, Holmberg M (2008) Myopathy with lactic acidosis is linked to chromosome 12q23.3–24.11 and caused by an intron mutation in the ISCU gene resulting in a splicing defect. Hum Mol Genet 17:1666–1672

    Article  PubMed  CAS  Google Scholar 

  • Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389–396

    Article  PubMed  CAS  Google Scholar 

  • Pagani F, Buratti E, Stuani C, Bendix R, Dork T, Baralle FE (2002) A new type of mutation causes a splicing defect in ATM. Nat Genet 30:426–429

    Article  PubMed  CAS  Google Scholar 

  • Polavarapu N, Marino-Ramirez L, Landsman D, McDonald JF, Jordan IK (2008) Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics 9:226

    Article  PubMed  CAS  Google Scholar 

  • Pollard AJ, Krainer AR, Robson SC, Europe-Finner GN (2002) Alternative splicing of the adenylyl cyclase stimulatory G-protein G alpha(s) is regulated by SF2/ASF and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and involves the use of an unusual TG 3’-splice Site. J Biol Chem 277:15241–15251

    Article  PubMed  CAS  Google Scholar 

  • Pozzoli U, Sironi M, Cagliani R, Comi GP, Bardoni A, Bresolin N (2002) Comparative analysis of the human dystrophin and utrophin gene structures. Genetics 160:793–798

    PubMed  CAS  Google Scholar 

  • Ram O, Schwartz S, Ast G (2008) Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol 28:3513–3525

    Article  PubMed  CAS  Google Scholar 

  • Ramchatesingh J, Zahler AM, Neugebauer KM, Roth MB, Cooper TA (1995) A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol Cell Biol 15:4898–4907

    PubMed  CAS  Google Scholar 

  • Rump A, Rosen-Wolff A, Gahr M, Seidenberg J, Roos C, Walter L, Gunther V, Roesler J (2006) A splice-supporting intronic mutation in the last bp position of a cryptic exon within intron 6 of the CYBB gene induces its incorporation into the mRNA causing chronic granulomatous disease (CGD). Gene 371:174–181

    Article  PubMed  CAS  Google Scholar 

  • Ryther RC, McGuinness LM, Phillips JA 3rd, Moseley CT, Magoulas CB, Robinson IC, Patton JG (2003) Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum Genet 113:140–148

    PubMed  CAS  Google Scholar 

  • Sakamoto T, Morita S, Tabata K, Nakamura K, Kawai G (2002) Solution structure of a SRP19 binding domain in human SRP RNA. J Biochem 132:177–182

    PubMed  CAS  Google Scholar 

  • Sanford JR, Coutinho P, Hackett JA, Wang X, Ranahan W, Cáceres JF (2008) Identification of nuclear and cytoplasmic mRNA targets for the shuttling protein SF2/ASF. PLoS One 3:e3369

    Article  PubMed  CAS  Google Scholar 

  • Schaal TD, Maniatis T (1999) Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol 19:261–273

    PubMed  CAS  Google Scholar 

  • Schwartz S, Gal-Mark N, Kfir N, Oren R, Kim E, Ast G (2009) Alu exonization events reveal features required for precise recognition of exons by the splicing machinery. PLoS Comput Biol 5:e1000300

    Article  PubMed  CAS  Google Scholar 

  • Sela N, Mersch B, Gal-Mark N, Lev-Maor G, Hotz-Wagenblatt A, Ast G (2007) Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu’s unique role in shaping the human transcriptome. Genome Biol 8:R127

    Article  PubMed  CAS  Google Scholar 

  • Selvakumar M, Helfman DM (1999) Exonic splicing enhancers contribute to the use of both 3′ and 5′ splice site usage of rat beta-tropomyosin pre-mRNA. RNA 5:378–394

    Article  PubMed  CAS  Google Scholar 

  • Seong JY, Han J, Park S, Wuttke W, Jarry H, Kim K (2002) Exonic splicing enhancer-dependent splicing of the gonadotropin-releasing hormone premessenger ribonucleic acid is mediated by tra2alpha, a 40-kilodalton serine/arginine-rich protein. Mol Endocrinol 16:2426–2438

    Article  PubMed  CAS  Google Scholar 

  • Serra MJ, Lyttle MH, Axenson TJ, Schadt CA, Turner DH (1993) RNA hairpin loop stability depends on closing base pair. Nucleic Acids Res 21:3845–3849

    Article  PubMed  CAS  Google Scholar 

  • Shiga N, Takeshima Y, Sakamoto H, Inoue K, Yokota Y, Yokoyama M, Matsuo M (1997) Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy. J Clin Invest 100:2204–2210

    Article  PubMed  CAS  Google Scholar 

  • Sironi M, Menozzi G, Comi GP, Bresolin N, Cagliani R, Pozzoli U (2005) Fixation of conserved sequences shapes human intron size and influences transposon-insertion dynamics. Trends Genet 21:484–488

    Article  PubMed  CAS  Google Scholar 

  • Sironi M, Menozzi G, Comi GP, Cereda M, Cagliani R, Bresolin N, Pozzoli U (2006) Gene function and expression level influence the insertion/fixation dynamics of distinct transposon families in mammalian introns. Genome Biol 7:R120

    Article  PubMed  CAS  Google Scholar 

  • Smit AF (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9:657–663

    Article  PubMed  CAS  Google Scholar 

  • Smit AF, Riggs AD (1995) MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res 23:98–102

    Article  PubMed  CAS  Google Scholar 

  • Smit AF, Hubley R, Green P (1996) RepeatMasker Open-3.0

  • Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR (2006) An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet 15:2490–2508

    Article  PubMed  CAS  Google Scholar 

  • Sorek R (2007) The birth of new exons: mechanisms and evolutionary consequences. RNA 13:1–6

    Article  CAS  Google Scholar 

  • Sorek R, Ast G, Graur D (2002) Alu-containing exons are alternatively spliced. Genome Res 12:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F, Graur D, Ast G (2004) Minimal conditions for exonization of intronic sequences: 5′ splice site formation in Alu exons. Mol Cell 14:221–231

    Article  PubMed  CAS  Google Scholar 

  • Stadler MB, Shomron N, Yeo GW, Schneider A, Xiao X, Burge CB (2006) Inference of splicing regulatory activities by sequence neighborhood analysis. PLoS Genet 2:e191

    Article  PubMed  CAS  Google Scholar 

  • Staffa A, Cochrane A (1995) Identification of positive and negative splicing regulatory elements within the terminal tat-rev exon of human immunodeficiency virus type 1. Mol Cell Biol 15:4597–4605

    PubMed  CAS  Google Scholar 

  • Steingrimsdottir H, Rowley G, Dorado G, Cole J, Lehmann AR (1992) Mutations which alter splicing in the human hypoxanthine–guanine phosphoribosyltransferase gene. Nucleic Acids Res 20:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Stum M, Davoine CS, Vicart S, Guillot-Noel L, Topaloglu H, Carod-Artal FJ, Kayserili H, Hentati F, Merlini L, Urtizberea JA et al (2006) Spectrum of HSPG2 (Perlecan) mutations in patients with Schwartz–Jampel syndrome. Hum Mutat 27:1082–1091

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Chen M, Xu J, Luo J (2005) Relationships among stop codon usage bias, its context, isochores, and gene expression level in various eukaryotes. J Mol Evol 61:437–444

    Article  PubMed  CAS  Google Scholar 

  • Tacke R, Manley JL (1995) The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J 14:3540–3551

    PubMed  CAS  Google Scholar 

  • Tange TO, Kjems J (2001) SF2/ASF binds to a splicing enhancer in the third HIV-1 tat exon and stimulates U2AF binding independently of the RS domain. J Mol Biol 312:649–662

    Article  PubMed  CAS  Google Scholar 

  • Toor N, Keating KS, Taylor SD, Pyle AM (2008) Crystal structure of a self-spliced group II intron. Science 320:77–82

    Article  PubMed  CAS  Google Scholar 

  • Turpin E, Dalle B, de Roquancourt A, Plassa LF, Marty M, Janin A, Beuzard Y, de The H (1999) Stress-induced aberrant splicing of TSG101: association to high tumor grade and p53 status in breast cancers. Oncogene 18:7834–7837

    Article  PubMed  CAS  Google Scholar 

  • Ugarte M, Aguado C, Desviat LR, Sanchez-Alcudia R, Rincon A, Perez B (2007) Propionic and methylmalonic acidemia: antisense therapeutics for intronic variations causing aberrantly spliced messenger RNA. Am J Hum Genet 81:1262–1270

    Article  CAS  Google Scholar 

  • Valadkhan S, Manley JL (2000) A tertiary interaction detected in a human U2–U6 snRNA complex assembled in vitro resembles a genetically proven interaction in yeast. RNA 6:206–219

    Article  PubMed  CAS  Google Scholar 

  • van Oers CC, Adema GJ, Zandberg H, Moen TC, Baas PD (1994) Two different sequence elements within exon 4 are necessary for calcitonin-specific splicing of the human calcitonin/calcitonin gene-related peptide I pre-mRNA. Mol Cell Biol 14:951–960

    PubMed  Google Scholar 

  • Varani G (1995) Exceptionally stable nucleic acid hairpins. Annu Rev Biophys Biomol Struct 24:379–404

    Article  PubMed  CAS  Google Scholar 

  • Varani L, Hasegawa M, Spillantini MG, Smith MJ, Murrell JR, Ghetti B, Klug A, Goedert M, Varani G (1999) Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc Natl Acad Sci USA 96:8229–8234

    Article  PubMed  CAS  Google Scholar 

  • Varon R, Gooding R, Steglich C, Marns L, Tang H, Angelicheva D, Yong KK, Ambrugger P, Reinhold A, Morar B et al (2003) Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nat Genet 35:185–189

    Article  PubMed  CAS  Google Scholar 

  • Vela E, Hilari JM, Roca X, Munoz-Marmol AM, Ariza A, Isamat M (2007) Multisite and bidirectional exonic splicing enhancer in CD44 alternative exon v3. RNA 13:2312–2323

    Article  PubMed  CAS  Google Scholar 

  • Venables JP, Koh CS, Froehlich U, Lapointe E, Couture S, Inkel L, Bramard A, Paquet ER, Watier V, Durand M et al. (2008) Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol Cell Biol 28:6033–6043

    Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Vervoort R, Gitzelmann R, Lissens W, Liebaers I (1998) A mutation (IVS8 + 0.6kbdelTC) creating a new donor splice site activates a cryptic exon in an Alu-element in intron 8 of the human beta-glucuronidase gene. Hum Genet 103:686–693

    PubMed  CAS  Google Scholar 

  • Vorechovsky I (2006) Aberrant 3′ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res 34:4630–4641

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119:831–845

    Article  PubMed  CAS  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  PubMed  CAS  Google Scholar 

  • Weil D, D’Alessio M, Ramirez F, Steinmann B, Wirtz MK, Glanville RW, Hollister DW (1989) Temperature-dependent expression of a collagen splicing defect in the fibroblasts of a patient with Ehlers–Danlos syndrome type VII. J Biol Chem 264:16804–16809

    PubMed  CAS  Google Scholar 

  • Woese CR, Winker S, Gutell RR (1990) Architecture of ribosomal RNA: constraints on the sequence of “tetra-loops”. Proc Natl Acad Sci USA 87:8467–8471

    Article  PubMed  CAS  Google Scholar 

  • Yeakley JM, Morfin JP, Rosenfeld MG, Fu XD (1996) A complex of nuclear proteins mediates SR protein binding to a purine-rich splicing enhancer. Proc Natl Acad Sci USA 93:7582–7587

    Article  PubMed  CAS  Google Scholar 

  • Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11:377–394

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Maroney PA, Denker JA, Zhang XH, Dybkov O, Luhrmann R, Jankowsky E, Chasin LA, Nilsen TW (2008) Dynamic regulation of alternative splicing by silencers that modulate 5′ splice site competition. Cell 135:1224–1236

    Article  PubMed  CAS  Google Scholar 

  • Zatkova A, Messiaen L, Vandenbroucke I, Wieser R, Fonatsch C, Krainer AR, Wimmer K (2004) Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1. Hum Mutat 24:491–501

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18:1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Kangsamaksin T, Chao MS, Banerjee JK, Chasin LA (2005) Exon inclusion is dependent on predictable exonic splicing enhancers. Mol Cell Biol 25:7323–7332

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Li WH, Krainer AR, Zhang MQ (2008) RNA landscape of evolution for optimal exon and intron discrimination. Proc Natl Acad Sci USA 105:5797–5802

    Article  PubMed  Google Scholar 

  • Zheng ZM (2004) Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 11:278–294

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZM, He PJ, Baker CC (1997) Structural, functional, and protein binding analyses of bovine papillomavirus type 1 exonic splicing enhancers. J Virol 71:9096–9107

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank to I. Eperon and F. Major for useful discussions. This work was supported by a grant (47-2008) from the Juvenile Diabetes Research Foundation International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Vorechovsky.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorechovsky, I. Transposable elements in disease-associated cryptic exons. Hum Genet 127, 135–154 (2010). https://doi.org/10.1007/s00439-009-0752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0752-4

Keywords

Navigation