Skip to main content
Log in

Molecular characterization of Portuguese patients with mucopolysaccharidosis type II shows evidence that the IDS gene is prone to splicing mutations

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Summary

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal storage disease caused by a defect in the iduronate-2-sulfatase gene (IDS). Alternative splicing of the IDS gene can occur and the underlying regulatory mechanism may be rather complex. Nevertheless, little information is available on the role of variations at the IDS locus in the splicing process. Here we report that splice mutations at the IDS locus are an important source of MPS II pathogenicity, accounting for almost 56% of Portuguese cases. Among 16 unrelated Portuguese MPS II patients, 15 different mutations were identified: six intronic splice mutations (c.104−2AG, c.241−2A>G, c.241−1G>A, c.418+1G>A, c.880−8AG and c.1181−1G>C); two exonic splice mutations (c.1006G>lC and c.1122C>T); five missense mutations (D269V, D69V, D148N, R88C and P86L); one nonsense mutation (Q465Ter); one total IDS gene deletion; and one rearrangement involving a IDS gene inversion. Furthermore, nine of the 15 detected mutations affected the usual splicing pattern at the locus. Some of them are responsible for dramatic changes in the splicing mechanism. For example, the substitution mutation, c.418+1G>A, revealed the presence of an exonic sequence inside intron 3. Our study provides evidence that the IDS locus is prone to splicing mutations and that such susceptibility is particularly high in exon 3 and neighbouring regions. Consequently, mutation screening of the IDS gene cannot be restricted to gDNA examination. Unless cDNA analysis is also conducted, misclassifications as silent or missense mutations can be produced and even uncharacteristic splice-site mutations can be misinterpreted as classic splicing defects that may generate severe, unconventional splicing alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ct:

threshold cycle

DMSO:

dimethyl sulfoxide

dNTP:

deoxyribonucleotide triphosphate

ESE:

exonic splicing enhancer

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

HGMD:

Human Gene Mutation Database

IDS:

iduronate 2-sulfatase

IDS :

iduronate-2-sulfatase gene

IDS-2 :

iduronate-2-sulfatase pseudogene

MEM:

minimal essential medium

MPS II:

mucopolysaccharidosis type II

NMD:

nonsense-mediated mRNA decay

PCR:

polymerase chain reaction

PTC:

premature termination codon

qRt-PCR:

quantitative real-time PCR

RT-PCR:

reverse transcription PCR

SR protein:

serine/arginine-rich protein

ss:

splice-site score

References

  • Aretz S, Uhlhaas S, Sun Y, et al (2004) Familial adenomatous polyposis: aberrant splicing due to missense or silent mutations in the APC gene. Hum Mutat 24: 370–380.

    Article  PubMed  CAS  Google Scholar 

  • Bunge S, Rathmann M, Steglich C, et al (1998) Homologous nonallelic recombinations between the iduronate-sulfatase gene and pseudogene cause various intragenic deletions and inversions in patients with mucopolysaccharidosis type II. Eur J Hum Genet 65: 492–500.

    Article  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268: 78–94.

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3: 285–298.

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Wang J, Zhu Z, et al (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acid Res 31: 3568–3571.

    Article  PubMed  CAS  Google Scholar 

  • Eng L, Coutinho G, Nahas et al (2004) Nonclassical splicing mutations in the coding and noncoding regions of the ATM gene: maximum entropy estimates of splice junction strengths. Hum Mutat 23: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17: 419–437.

    Article  PubMed  CAS  Google Scholar 

  • Froissart R, Maire I, Millat G, et al (1998) Identification of iduronate sulfatase gene alterations in 70 unrelated Hunter patients. Clin Genet 53: 362–368.

    Article  PubMed  CAS  Google Scholar 

  • Froissart R, Moreira da Silva I, Guffon N, Bozon D, Maire IR (2002) Mucopolysaccharidosis type II-genotype/phenotype aspects. Acta Paediatr Suppl 91: 82–87.

    Article  PubMed  CAS  Google Scholar 

  • Gort L, Chabas A, Coll MJ (1998) Hunter disease in the Spanish population: molecular analysis in 31 families. J Inherit Metab Dis 21: 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Karsten S, Voskoboeva E, Krasnopolskaja X, Bondeson ML (1999) Novel type of genetic rearrangement in the iduronate-2-sulfatase (IDS) gene involving deletion, duplications, and inversions. Hum Mutat 14:471–476.

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Hwang HZ, Song SM, et al (2003) Mutational spectrum of the iduronate 2 sulfatase gene in 25 unrelated Korean Hunter syndrome patients: identification of 13 novel mutations. Hum Mutat 4: 449–450.

    Article  CAS  Google Scholar 

  • Lagerstedt K, Karsten SL, Carlberg BM, et al (1997) Double-strand breaks may initiate the inversion mutation causing the Hunter syndrome. Hum Mol Genet 6: 627–633.

    Article  PubMed  CAS  Google Scholar 

  • Li P, Bellows AB, Thompson JN (1999) Molecular basis of iduronate-2-sulphatase gene mutations in patients with mucopolysaccharidosis type II (Hunter syndrome). J Med Genet 36: 21–7.

    PubMed  CAS  Google Scholar 

  • Lualdi S, Regis S, Di Rocco M, et al (2005) Characterization of iduronate-2-sulfatase gene — pseudogene recombinations in eight patients with mucopolysaccharidosis type II revealed by a rapid PCR-based method. Hum Mutat 25: 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Maquat LE, Carmichael GG (2001) Quality control of mRNA function. Cell 104: 173–176.

    Article  PubMed  CAS  Google Scholar 

  • Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6: 386–398.

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from nucleated cells. Nucleic Acids Res 16: 1215.

    PubMed  CAS  Google Scholar 

  • Moreira da Silva I, Froissart R, Marques dos Santos H, Caseiro C, Maire I, Bozon D (2001) Molecular basis of mucopolysaccharidosis type II in Portugal: identification of four novel mutations. Clin Genet 60: 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld EF, Muenzer J (2001) The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 2465–2508.

    Google Scholar 

  • Pinto R, Caseiro C, Lemos M, et al (2004) Prevalence of lysosomal storage diseases in Portugal. Eur J Hum Genet 12: 87–92.

    Article  PubMed  Google Scholar 

  • Sironi M, Menozzi G, Riva L, et al (2004) Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Res 32: 1783–1791.

    Article  PubMed  CAS  Google Scholar 

  • Susani L, Pangrazio A, Sobacchi C, et al (2004) TCIRG1-dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum Mutat 24: 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Timms KM, Bondeson ML, Ansari-Lari MA, et al (1997) Molecular and phenotypic variation in patients with severe Hunter syndrome. Hum Mol Genet 6: 479–486.

    Article  PubMed  CAS  Google Scholar 

  • Wilson PJ, Meaney CA, Hopwood JJ, Morris CP (1993) Sequence of the human iduronate 2-sulfatase (IDS) gene. Genomics 17: 773–775.

    Article  PubMed  CAS  Google Scholar 

  • Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11: 377–394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Alves.

Additional information

Communicating editor: Douglas Brooks

Competing interests: None declared

References to electronic databases. OMIM disorder/gene accession number: 309900. EC number 3.1.6.13. HUGO-approved gene symbol: IDS. GenBank Accession number: AH002847. Vega Gene ID: TTHUMG00000022615. Ensembl Gene ID: ENSG00000010404

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, S., Mangas, M., Prata, M.J. et al. Molecular characterization of Portuguese patients with mucopolysaccharidosis type II shows evidence that the IDS gene is prone to splicing mutations. J Inherit Metab Dis 29, 743–754 (2006). https://doi.org/10.1007/s10545-006-0403-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0403-z

Keywords

Navigation