Skip to main content
Log in

QTL mapping and candidate gene prediction for fiber yield and quality traits in a high-generation cotton chromosome substitution line with Gossypium barbadense segments

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Gossypium provides the foremost natural fiber for supporting the rapid development of the textile industry. Quantitative trait locus (QTL) mapping of fiber yield and quality traits is, thus, of great significance for providing a foundation for the genetic improvement of key target traits in cotton production. In this study, a superior chromosome segment substitution line (CSSL), MBI8255, with high yield and premium fiber quality characteristics was cultivated from the BC5F3:5 lineage derived from G. barbadense Hai1 and G. hirsutum CCRI36, and was chosen to construct a segregation population containing 123 F2 individuals with CCRI36. A total of 71 polymorphic SSR (simple sequence repeat) markers were identified based on a previous high-density linkage map, and 17 QTLs distributed on five chromosomes were detected, of which 10 QTLs for cotton yield explained 0.26–15.41% of phenotypic variations, while 7 QTLs for fiber quality explained 0.84–9.38% of phenotypic variations, separately containing four and one stable QTLs detected from over two environments. Among three identified QTL clusters, only the Chr19 QTL cluster harbored two stable and one unstable QTL for three different traits, and hence this significant region, which included 1546 genes, was subjected to functional enrichment and transcriptome expression analyses, ultimately screening eight candidate genes relevant to fiber development. This study not only provides useful information for the further fine-mapping and functional verification of candidate genes, but also offers a solid foundation for revealing the molecular mechanisms of fiber formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cui S, Fukao Y, Mano S, Yamada K, Hayashi M, Nishimura M (2013) Proteomic analysis reveals that the Rab GTPase RabE1c is involved in the degradation of the peroxisomal protein receptor PEX7 (peroxin 7). J Biol Chem 288:6014–6023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duran C, Edwards D, Batley J (2009) Genetic maps and the use of synteny. Methods Mol Biol 513:41–55

    Article  CAS  PubMed  Google Scholar 

  • Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4:199–211

    Article  CAS  PubMed  Google Scholar 

  • Enns LC, Kanaoka MM, Torii KU, Comai L, Okada K, Cleland RE (2005) Two callose synthases GSL1 and GSL5 play an essential and redundant role in plant and pollen development and in fertility. Plant Mol Biol 58:333–349

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E, Bellis FD, Faye I, Ndoye O, Leal-Bertioli SCM, Valls JFM, Bertioli DJ, Glaszmann J, Courtois B, Rami J (2012) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L) using a wild synthetic and QTL mapping for plant morphology. Plos One 7:e48642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L. Shi Y. Gong J. Liu A. Tan Y. Gong W. Li J. Chen T. Shang H. Ge Q. Lu Q. Sun J. Yuan Y (2018) Genetic analysis of the fiber quality and yield traits in G. hirsutum background using chromosome segments substitution lines (CSSLs) from Gossypium barbadense. Euphytica 214:82

  • Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Yang H, Xiang S, Tian D, Wang W, Zhao T, Gai J (2015) Fine mapping of the genetic locus L1 conferring black pods using a chromosome segment substitution line population of soybean. Plant Breeding 134:437–445

    Article  CAS  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan Y, Rahman M, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748

    Article  CAS  PubMed  Google Scholar 

  • Lao NT, Long D, Kiang S, Coupland G, Shoue DA, Carpita NC, Kavanagh TA (2003) Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. Plant Mol Biol 53:687–701

    Article  Google Scholar 

  • Li J, Yang M, Li J, Shi Y, Liu A, Chen Q, Li A, Zhang B, Liu G, Jiang J, Wang T, Yuan Y (2009) Using G. hirsutum × G. barbadense BC1 populations construction cotton genetic linkage map and primary QTL analysis of yield related traits. Chin Agric Sci Bull 25:11–18 ((In Chinese))

    CAS  Google Scholar 

  • Li Y, Zhou R, Wang J, Liao X, Branlard G, Jia J (2012) Novel and favourable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Mol Breeding 29(3):627–643

    Article  Google Scholar 

  • Li B, Shi Y, Gong J, Li J, Liu A, Shang H, Gong W, Chen T, Ge Q, Jia C, Lei Y, Hu Y, Yuan Y (2016) Genetic effects and heterosis of yield and yield component traits based on Gossypium barbadense chromosome segment substitution lines in two Gossypium hirsutum backgrounds. Plos One 11:0157978

    Google Scholar 

  • Li SQ, Liu AY, Kong LL, Gong JW, Li JW, Gong WK, Lu QW, Li PT, Ge Q, Shang HH, Xiao XH, Liu RX, Zhang Q, Shi YZ, Yuan YL (2019b) QTL mapping and genetic effect of chromosome segment substitution lines with excellent fiber quality from Gossypium hirsutum × Gossypium barbadense. Mol Genet Genomics 294(5):1123–1136

    Article  CAS  PubMed  Google Scholar 

  • Li P. Wang M. Lu Q. Ge Q. Rashid M. Liu A. Gong J. Shang H. Gong W. Li J. Song W. Guo L. Shi Y. Yuan Y (2017) Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense. BMC Genomics 18:705

  • Li PT. Rashid MHO. Chen TT. Lu QW. Ge Q. Gong WK. Liu AY. Shang HH. Deng XY. Li JW. Li SQ. Xiao XH. Liu RX. Zhang Q. Duan L. Zou XY. Zhang Z. Jiang X. Zhang Y. Peng RH. Shi YZ. Yuan YL (2019) Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line form G. hirsutum × G. barbadesne in response to Verticillium dahliae infection. BMC Plant Biology 19:19

  • Livak KJ, Schmittgen TD (2021) Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔct method. Methods 25:402–408

    Article  Google Scholar 

  • Luan M, Guo X, Zhang Y, Yao J, Chen W (2010) QTL mapping for agronomic and fibre traits using two interspecific chromosome substitution lines of Upland cotton. Plant Breeding 128(6):671–679

    Article  Google Scholar 

  • Ma J. Geng Y. Pei W. Wu M. Li X. Liu G. Li D. Ma Q. Zang X. Yu S. Zhang J. Yu J (2018) Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.). BMC Genomics 19:882

  • Matsuoka D, Yasufuku T, Furuya T, Nanmori T (2015) An abscisic acid inducible Arabidopsis MAPKKK MAPKKK18 regulates leaf senescence via its kinase activity. Plant Mol Biol 87:565–575

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina M. Thyssen GN. Fang DD. Jenkins JN. Mccarty JC. Florane CB (2019) Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population. BMC Genomics 20:112

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  CAS  PubMed  Google Scholar 

  • Qin Y. H Sun H. Hao. P. Wang H. Wang C. Ma L. Wei H. Yu S (2019) Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines. BMC Genomics 20:633

  • Said JI, Song MZ, Wang HT, Lin ZX, Zhang XL, Fang DD, Zhang JF (2015) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Molecular Genetics&genomics 290:1003–1025

    CAS  Google Scholar 

  • Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Ralph J, Demura T, Ellis B, Samuels AL (2014) Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol 166:798–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen X, Guo W, Zhu X, Yuan Y, Yu J, Z. Kohel RJ. Zhang T, (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breeding 15:169–181

    Article  CAS  Google Scholar 

  • Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Li W, Li A, Ge R, Zhang B, Li J, Liu A, Shang H, Gong J, Gong W, Yang Z, Tang F, Liu Z, Zhu W, Jiang J, Yu X, Wang T, Wang W, Chen T, Wang K, Zhang Z, Yuan Y (2015) Constructing a high-density linkage map for Gossypium hirsutum × Gossypium barbadense and identifying QTLs for lint percentage. J Integr Plant Biol 57:450–467

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang B, Liu A, Li W, Li J, Lu Q, Zhang Z, Li S, Gong W, Shang H, Gong J, Chen T, Ge Q, Wang T, Zhu H, Liu Z, Yuan Y (2016) Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense. BMC Genomics 17:877

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Liu A, Li J, Zhang J, Zhang B, Ge Q, Muhammad J, Lu Q, Li S, Xiao X, Gong J, Gong W, Shang H, Deng X, Pan J, Yuan Y (2019) Dissecting the genetic basis of fiber quality and yield traits in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense. Mol Genet Genomics 294:1385–1402

    Article  CAS  PubMed  Google Scholar 

  • Shi YZ, Liu AY, Li JW, Zhang JF, Li SQ, Zhang JF, Ma LJ, He R, Song WW, Guo LX, Lu QW, Xiang XH, Gong WK, Gong JW, Ge Q, Shang HH, Deng XY, Pan JT, Yuan YL (2020) Examining two sets of introgression lines across multiple environments reveals background-independent and stably expressed quantitative trait loci of fiber quality in cotton. Theor Appl Genet 133:2075–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WW, Wang M, Su W, Lu QW, Xiao XH, Cai J, Zhang Z, Li SQ, Li PT, Gong JW, Gong WK, Shang HH, Liu AY, Li JW, Chen TT, Ge Q, Shi YZ, Yuan YL (2017) Genetic and phenotypic effects of chromosome segments introgressed lines from Gossypium barbadense into Gossypium hirsutum. Plos One 12:0184882

    Article  Google Scholar 

  • Stelly DM, Saha S, Raska DA, Jenkins JN, Mccarty JC, Gutierrez OA (2005) Registration of 17 upland (Gossypium hirsutum) cotton germplasm lines disomic for different G. barbadense chromosome or arm substitutions. Crop Sci 45:2663–2665

    Article  Google Scholar 

  • Su CF, Wang W, Qiu XM, Yang L, Li S, Wang MX, Pan QB (2013) Fine-mapping a fibre strength QTL QFS-D11-1 on cotton chromosome 21 using introgressed lines. Plant Breeding 132:725–730

    Article  CAS  Google Scholar 

  • Sun J, Ma Q, Mao T (2015) Ethylene Regulates the Arabidopsis Microtubule-Associated Protein WAVE-DAMPENED2-LIKE5 in Etiolated Hypocotyl Elongation. Plant Physiol 169:325–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Van BR (2008) GGT 20: versatile software for visualization and analysis of genetic data. J Hered 99:232–236

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J (2006) QTL mapping of grain length in rice (Oryza sativa L) using chromosome segment substitution lines. Genet Res 88:93–104

    Article  CAS  PubMed  Google Scholar 

  • Wang FR, Zhang JX, Chen Y, Zhang CY, Gong JW, Song ZQ, Zhou J, Wang JJ, Zhao CJ, Jiao MJ, Liu AY, Du ZH, Yuan YL, Fan SJ, Zhang J (2020a) Identification of candidate genes for key fibre-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. Plant Biotechnol J 18:707–720

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Xu J, Li L, Guo Z, Si Q, Zhu G, Wang X, Guo W (2020b) GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways. Plant Biotechnol J 18:222–238

    Article  CAS  PubMed  Google Scholar 

  • Wang P. Zhu YJ. Song XL. Cao ZB. Ding YZ. Liu BL. Zhu XF. Wan,g S. Guo WZ. Zhang TZ (2012) Inheritance of long staple fiber quality traits of Gossypium babadense in G. hirsutum background using CSILs. Theoretical and Applied Genetics 124:1415

  • Wei X, Wang B, Peng Q, Wei F, Mao K, Zhang X, Sun P, Liu Z, Tang J (2015) Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breeding 35:1–13

    Article  CAS  Google Scholar 

  • Xu P, Gao J, Cao ZB, Chee PW, Guo Q, Xu ZZ, Andrew HP, Zhang XG, Shen XL (2017) Fine maping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton. Theor Appl Genet 130:1309–1319

    Article  CAS  PubMed  Google Scholar 

  • Yang Y. Guo M. Li R. Shen L. Wang W. Liu M. Zhu Q. Hu Z. He Q. Xue Y. Tang S. Gu M. Yan C (2015) Identification of quantitative trait loci responsible for rice grain protein content using chromosome segment substitution lines and fine mapping of qPC-1 in rice (Oryza sativa L.). Molecular Breeding:35:1–9

  • Zhang J, Guo W, Zhang T (2002) Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C, Scheffler B, Stelly D, Hulse-Kemp A, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R, Chen X, Dennis E, Llewellyn D, Peterson D, Thaxton P, Jones D, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zou Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li JW, Muhammad J, Shi YZ, Liu AY, Gong JW, Wang SF, Zhang JH, Sun FD, Jia F, Ge Q, Fan LQ, Zhang ZB, Pan JT, Fan SM, Wang YL, Lu QW, Liu RX, Deng XY, Zou XY, Jiang X, Liu P, Li PT, Muhammad SI, Zhang CY, Zou J, Chen H, Tian Q, Jia XH, Wang BQ, Ai NJ, Feng GL, Wang YM, Hong M, Li SL, Lian WM, Wu B, Hua JP, Zhang CJ, Huang JY, Xu AX, Shang HH, Gong WK, Yuan YL (2020) Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population. Plant Biotechnol J 18:239–253

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Liu J, Xu J, Liang Z, Wu Q, Xiao S (2018) Quantitative trait locus mapping and candidate gene analysis for verticillium wilt resistance using Gossypium barbadense chromosomal segment introgressed line. Front Plant Sci 9:682

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Li XM, Wang ZW, You CY, Nie XH, Sun J, Zhang XL, Zhang DW, Lin ZX (2020) Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton. BMC Genomics 21:431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31801404 and 32070560), Joint Funds of the National Natural Science Foundation (U1804103), the Doctoral and Postdoctoral Research Fund of Anyang Institute of Technology (BSJ2019014 and BHJ2020002), and the Natural Science Foundation of Henan Province(202300410549), and Central Public-interest Scientific Institution Basal Research Fund (1610162021011).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: YLY, YZS, and QWL. Performed the experiments: PTL, RY, XXH, ZYL, QYW, JWG, QG, AYL, SLD, JDW, and YZS. Analyzed the data: QWL and XHX. Drafted the manuscript: PTL and QWL. Revised the manuscript: QWL, PTL, YZS, and YLY.

Corresponding author

Correspondence to Youlu Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by Bing Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Li, P., Yang, R. et al. QTL mapping and candidate gene prediction for fiber yield and quality traits in a high-generation cotton chromosome substitution line with Gossypium barbadense segments. Mol Genet Genomics 297, 287–301 (2022). https://doi.org/10.1007/s00438-021-01833-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-021-01833-7

Keywords

Navigation