Skip to main content
Log in

A comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium hirsutum × Gossypium barbadense population

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Upland cotton (Gossypium hirsutum L.) is the most important fiber crop, and its lint-yield improvement is impeded due to its narrow genetic base and the lack of understanding of the genetic basis of yield. Backcross inbred lines (BILs) or near-isogenic lines (NILs) in the same genetic background differing in lint yield, developed through advanced backcrossing, provide an important genomic resource to study the molecular genetic basis of lint yield. In the present study, a high-yield (HY) group and a low-yield (LY) group each with three BILs were selected from a BIL population between G. hirsutum and G. barbadense. Using a microarray-based comparative transcriptome analysis on developing fibers at 10 days post-anthesis (DPA) between the two groups, 1486 differentially expressed genes (DEGs) were identified. A total of 212 DEGs were further mapped in the regions of 24 yield QTL and 11 yield trait QTL hotspots as reported previously, and 81 DEGs mapped with the 7 lint-yield QTL identified in the BIL population from which the two sets of BILs were selected. Gene Ontology annotations and Blast-Mapping-Annotation-KEGG analysis via Blast2GO revealed that more DEGs were associated with catalytic activity and binding, followed by transporters, nucleic acid binding transcription factors, structural molecules and molecular transducer activities. Six DEGs were chosen for a quantitative RT-PCR assay, and the results were consistent with the microarray analysis. The development of DEGs-based markers revealed that 7 single strand conformation polymorphism-based single nucleotide polymorphic (SSCP-SNP) markers were associated with yield traits, and 3 markers with lint yield. In the present study, we identified a number of yield and yield component QTL-co-localizing DEGs and developed several DEG-based SSCP-SNP markers for the traits, thereby providing a set of candidate genes for molecular breeding and genetic manipulation of lint yield in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

HY:

High-yield

LY:

Low-yield

HYP:

HY parent

LYP:

LY parent

DEGs:

Differentially expressed genes

NILs:

Near isogenic lines

DPA:

Days post-anthesis

QTL:

Quantitative trait loci

References

  • Arpat A, Waugh M, Sullivan J, Gonzales M, Frisch D et al (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929

    Article  CAS  PubMed  Google Scholar 

  • Basra AS, Malik CP (1984) Development of the cotton fiber. Int Rev Cytol 89:65–113

    Article  CAS  Google Scholar 

  • Bennett J, Hondred D, Register JC (2015) Keeping qRT-PCR rigorous and biologically relevant. Plant Cell Rep 34:1–3

    Article  CAS  PubMed  Google Scholar 

  • Bolton JJ, Soliman KM, Wilkins TA, Jenkins JN (2009) Aberrant expression of critical genes during secondary cell wall biogenesis in a cotton mutant, Ligon Lintless-1 (Li-1). Comp Funct Genomics 65:9301–9308

    Google Scholar 

  • Costa MM, Hilliou F, Duarte P, Pereira LG, Almeida I et al (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtiss J, Rodriguez-Uribe L, Stewart JM, Zhang JF (2011) Identification of differentially expressed genes associated with semigamy in Pima cotton (Gossypium barbadense L.) through comparative microarray analysis. BMC Plant Biol 11:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duroux L, Welinder KG (2003) The peroxidase gene family in plants: a phylogenetic overview. J Mol Evol 57:397–407

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Tian R, Li X, Chen J, Wang S et al (2014) Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments. BMC Genom 15:838–853

    Article  Google Scholar 

  • Gabaldón C, López-Serrano M, Pedreno MA, Ros Barceló A (2005) Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involve in lignin biosynthesis. Plant Physiol 139:1138–1154

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert MK, Turley RB, Kim HJ, Li P, Thyssen G (2013) Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1). BMC Genom 14:403–420

    Article  CAS  Google Scholar 

  • Guo WZ, Cai CP, Wang CB, Han ZG, Song XL et al (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He D, Lin Z, Zhang X, Nie Y, Guo X et al (2005) Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica 144:141–149

    Article  CAS  Google Scholar 

  • Hinchliffe DJ, Wilkins W, Cantrell RG, Zhang JF (2005) Comparative microarray analysis of genes differentially expressed during fiber development of Upland and Pima cotton. In: Proceedings of Beltwide Cotton Conference, p883–896

  • Hinchliffe DJ, Meredith WR, Yeater KM, Kim HJ, Woodward AW (2010) Triplett BA: near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theor Appl Genet 120:1347–1366

    Article  CAS  PubMed  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  CAS  PubMed  Google Scholar 

  • Ji SJ, Lu YC, Feng JX, Wei G, Li J (2003) Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucl Acids Res 31(10):2534–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong Z, Ioki M, Braybrook S, Li S, Ye ZH (2015) Kinesin-4 functions in vesicular transport on cortical microtubules and regulates cell wall mechanics during cell elongation in plants. Mol Plant 8:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population. BMC Plant Biol 10:132–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacape JM, Claverie M, Vidal RO, Carazzolle MF, Guimaraes PGA (2012) Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS One 7:10–19

    Article  Google Scholar 

  • Lee JJ, Hassan OS, Gao W, Wei NE, Kohel RJ (2006) Developmental and gene expression analyses of a cotton naked seed mutant. Planta 223:418–432

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LY, Yu JW, Zhai HH, Huang SL, Li XL (2010) Comparative analysis of cotton fiber development related gene expression profiling. Mol Plant Breed 8:488–496

    CAS  Google Scholar 

  • Li XM, Gao WH, Guo HL, Zhang XL, Fang DD (2014) Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping. BMC Genom 15:1046–1047

    Article  Google Scholar 

  • Li FG, Fan GY, Lu CR, Xiao GH, Zou CS et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–529

    Article  PubMed  Google Scholar 

  • Lu YZ, Curtiss J, Percy RG, Hughs SE, Yu JW (2009) DNA polymorphisms of genes involved in fiber development in a selected set of cultivated tetraploid cotton. Crop Sci 49:1695–1704

    Article  CAS  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Mei WQ, Qin YM, Song WQ, Li J, Zhu YX (2009) Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genomics 36:141–150

    Article  CAS  PubMed  Google Scholar 

  • Michaelson JJ, Loguercio S, Beyer A (2009) Detection and interpretation of expression quantitative trait loci (eQTL). Methods 48:265–276

    Article  CAS  PubMed  Google Scholar 

  • Pang MX, Percy RG, Stewart JM, Hughs E, Zhang JF (2012) Comparative transcriptome analysis of Pima and Acala cotton during boll development using 454 pyrosequencing technology. Mol Breed 30:1143–1153

    Article  CAS  Google Scholar 

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic in land plants family in rice and its evolution. Phytochemistry 65:1879–1893

    Article  CAS  PubMed  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132:154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuss ML, Kovar DR, Lee YR, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Uribe L, Abdelraheem A, Tiwari R, Sengupta-Gapalan C, Hughs SE, Zhang JF (2014) Identification of drought response genes in a drought tolerant cotton (Gossypium hirsutum L.) under irrigated field conditions and development of candidate gene markers for drought tolerance. Mol Breed 14:1776–1796

    Google Scholar 

  • Said JI, Lin ZX, Zhang XL, Song MZ, Zhang JF (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom 14:776–798

    Article  CAS  Google Scholar 

  • Said JI, Knapka JA, Song MZ, Zhang JF (2015a) Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum x G. barbadense populations. Mol Genet Genom 290:1615–1625

    Article  CAS  Google Scholar 

  • Said JI, Song MZ, Wang HT, Lin ZX, Zhang XL, Fang DD, Zhang JF (2015b) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genom 290:1003–1025

    Article  CAS  Google Scholar 

  • Shen X, Guo W, Lu Q, Zhu X, Yuan Y (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari SC, Wilkins TA (1995) Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can J Bot 73:746–757

    Article  Google Scholar 

  • Tognolli M, Penel C, Creppin J, Simon P (2002) Analysis and expression of the large class III peroxidase gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  CAS  PubMed  Google Scholar 

  • Ulloa M, Saha S, Jenkins JN, Meredith WR, McCarty JC (2005) Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) Joinmap. J Hered 96:132–144

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Guo W, Zhu X, Wu Y, Huang N (2007) QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. J Genet Genomics 34:35–45

    Article  PubMed  Google Scholar 

  • Welinder KG, Justesen AF, Kjærsgård IVH, Jensen RB, Rasmussen SK et al (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081

    Article  CAS  PubMed  Google Scholar 

  • Wendel J, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium): characteristic weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Bot 17:115–143

    Article  Google Scholar 

  • Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart JM et al (2009) Evolution and natural history of the cotton genus. In: Paterson AP (ed) Genetics and Genomics of Cotton. Springer, New York. pp 3–22

  • Wu Y, Rozenfeld S, Defferrard A, Ruggiero K, Udall JA et al (2005) Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling. Mol Genet Genom 274:477–493

    Article  CAS  Google Scholar 

  • Wu Y, Llewellyn DJ, White R, Ruggiero K, Al-Ghazi Y et al (2007) Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta 226:1475–1490

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Soliman KM, Bolton JJ, Saha S, Jenkins JN (2008) Identification of differentially expressed genes associated with cotton fiber development in a chromosomal substitution line (CS-B22sh). Funct Integr. Genom 8:165–174

    Article  Google Scholar 

  • Wu J, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2009) Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of Upland cotton. Euphytica 165:231–245

    Article  Google Scholar 

  • Yang SS, Cheung F, Lee JJ, Ha M, Wei EN, Triplett BA, Town CD, Chen ZJ (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775

    Article  CAS  PubMed Central  Google Scholar 

  • Yu JW, Yu SX, Fan SL, Song MZ, Zhai HH et al (2012) Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Euphytica 187:191–201

    Article  Google Scholar 

  • Yu JW, Zhang K, Yu SX, Fan SL, Song MZ et al (2013a) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    Article  PubMed  Google Scholar 

  • Yu JW, Yu SX, Gore M, Wu M, Zhai HH et al (2013b) Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica 191:375–389

    Article  CAS  Google Scholar 

  • Yu J, Jung S, Cheng CH, Ficklin SP, Lee T et al (2014) CottonGen: a genomics, genetics and breeding database for cotton research. Nucl Acids Res 42:1229–1236

    Article  Google Scholar 

  • Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY et al (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L). Euphytica 144:91–99

    Article  CAS  Google Scholar 

  • Zhang YX, Lin ZX, Xia QZ, Zhang MJ, Zhang XL (2008a) Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome 51:534–546

    Article  CAS  PubMed  Google Scholar 

  • Zhang JF, Percy RG, McCarty JC Jr (2014) Introgression genetics and breeding between Upland and Pima cotton: a review. Euphytica 198:1–12

    Article  Google Scholar 

  • Zhang TZ, Hu Y, Jiang WK, Fang L, Guan XY et al (2015) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Lin ZX, Xia QZ, Zhang MJ, Zhang XL (2008b) Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome 51:534–546

    Article  CAS  PubMed  Google Scholar 

  • Zhou JL, Qiu J, Ye ZH (2007) Alteration in secondary wall deposition by overexpression of the Fragile Fiber1 kinesin-like protein in Arabidopsis. J Integr Plant Biol 49:1235–1243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was sponsored by a grant from the National Natural Science Foundation of China (Grant 31301367 and Grant 31301368) and the 863 National High-Tech Research Development Program in China (Grant 2012AA101108). The research was also in part supported by the New Mexico Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiwen Yu, Shuxun Yu or Jinfa Zhang.

Ethics declarations

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 31301367; 31301368) and the 863 National High-Tech Research Development Program in China (Grant No. 2012AA101108).

Conflict of interest

The authors declare that they no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Data 1. Primers used for RT-PCR and qRT-PCR analyses (XLSX 11 kb)

438_2016_1216_MOESM2_ESM.xlsx

Supplementary Data 2. Primer sequences for 45 genes used for the analysis of single strand conformation polymorphism (SSCP)-based single nucleotide polymorphic (SNP) markers (XLSX 14 kb)

438_2016_1216_MOESM3_ESM.xlsx

Supplementary Data 3. Microarray results for the differentially expressed genes (DEGs) identified in the high- and low-yield groups (XLSX 178 kb)

438_2016_1216_MOESM4_ESM.xlsx

Supplementary Data 4. Mapping of DEGs with the 24 yield QTL and 12 yield trait QTL hotspots on the genomes of G. hirsutum (XLSX 68 kb)

Supplementary Data 5. 212 mapped DEGs in the 24 yield QTL and 12 yield trait QTL hotspots (XLSX 45 kb)

Supplementary Data 6. 81 mapped DEGs with the 7 lint yield QTL (XLSX 24 kb)

Supplementary Data 7. Confirmation of the predicted SNPs (XLSX 10 kb)

Supplementary Data 8. Marker loci associated with various yield and fiber quality traits (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, W., Zhang, L., Li, X. et al. A comparative transcriptome analysis of two sets of backcross inbred lines differing in lint-yield derived from a Gossypium hirsutum × Gossypium barbadense population. Mol Genet Genomics 291, 1749–1767 (2016). https://doi.org/10.1007/s00438-016-1216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1216-x

Keywords

Navigation