Skip to main content
Log in

Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The most widely grown tetraploid Gossypium hirsutum and G. barbadense differ greatly in yield potential and fiber quality and numerous quantitative trait loci (QTLs) have been reported. However, correspondence of QTLs between experiments and populations is poor due to limited number of markers, small population size and inaccurate phenotyping. The purpose of the present study was to map QTLs for yield, yield components and fiber quality traits using testcross progenies between a large interspecific F2 population and a commercial cotton cultivar as the tester. The results were compared to these from its F2 and F2:3 progenies. Of the 177 QTLs identified from the three populations, 65 fiber QTLs and 51 yield QTLs were unique with an average of 8–12 QTLs per traits. All the 26 chromosomes carried QTLs, but differed in the number of QTLs and the number of QTLs between fiber and yield QTLs. The congruence of QTLs identified across populations was higher (20–60 %) for traits with higher heritabilities including fiber quality, seed index and lint percentage, but lower (10–25 %) for lower heritability traits-seedcotton and lint yields. Major QTLs, QTL clusters for the same traits and QTL ‘hotspots’ for different traits were also identified. This research represents the first report using a testcross population in QTL mapping in interspecific cotton crosses and provides useful information for further comparative analysis and marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Blenda A, Fang DD, Rami JM, Garsmeur O, Luo M, Lacape JM (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 7:e45739

    Article  CAS  PubMed  Google Scholar 

  • Bolek Y, El-Zik KM, Bell AE, Bell AA, Magill CE, Thaxton PM, Reddy OUK (2005) Mapping of verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1591

    Article  CAS  Google Scholar 

  • Chee PW, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005a) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763

    Article  CAS  PubMed  Google Scholar 

  • Chee PW, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005b) Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111:772–781

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genet 138:963–971

    CAS  Google Scholar 

  • Draye X, Chee PW, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor Appl Genet 111:764–771

    Article  CAS  PubMed  Google Scholar 

  • Guo WZ, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang TZ (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genet 176:527–541

    Article  CAS  Google Scholar 

  • He XH, Zhang YM (2011) A complete solution for dissecting pure main and epistatic effects of QTL in triple testcross design. PLoS One 6:e24575

    Article  CAS  PubMed  Google Scholar 

  • He D, Lin Z, Zhang X, Nie Y, Guo X, Feng C, Stewart JM (2005) Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica 144:141–149

    Article  CAS  Google Scholar 

  • He D, Lin Z, Zhang X, Nie Y, Guo X, Zhang Y, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197

    Article  CAS  Google Scholar 

  • Lacape JM, Nguyen TM (2005) Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. J Hered 96:441–444

    Article  CAS  PubMed  Google Scholar 

  • Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626

    Article  CAS  PubMed  Google Scholar 

  • Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci 45:123–140

    CAS  Google Scholar 

  • Lacape JM, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, Llewellyn D, Jean J, Thomas E, Viot C (2009) A new interspecific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton. Theor Appl Genet 119:281–292

    Article  CAS  PubMed  Google Scholar 

  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palaï O, Georges S, Giband M, de Assunção H, Barroso PA, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10:132

    Article  PubMed  Google Scholar 

  • Lanaud C, Fouet O, Clement D, Boccara M, Risterucci AM, Surujdeo-Maharaj S, Legavre T, Argout X (2009) A meta–QTL analysis of disease resistance traits of Theobroma cacao L. Mol Breed 24:361–374

    Article  Google Scholar 

  • Paterson AH, Saranga Y, Menz M, Jiang C, Wright RJ (2003) QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396

    CAS  PubMed  Google Scholar 

  • Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JM, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genet 138:829–847

    CAS  Google Scholar 

  • Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park CH, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347- locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genet 161:389–417

    Article  Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploid cotton QTLs shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genet 176:2577–2588

    Article  CAS  Google Scholar 

  • Saranga Y, Menz M, Jiang C, Wright RJ, Yakir D, Paterson AH (2001) Genetic dissection of genotype × environment interactions conferring adaptation of cotton to arid conditions. Genome Res 11:1988–1995

    Article  CAS  PubMed  Google Scholar 

  • Saranga Y, Jiang CX, Wright RJ, Yakir D, Paterson AH (2004) Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ 27:263–277

    Article  CAS  Google Scholar 

  • Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm). Accessed 1 Feb 2013

  • Wendel JF, Cronn RC (2003) Polyplody and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wright RJ, Thaxton PM, El-Zik KM, Paterson AH (1998) D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genet 149:1987–1996

    CAS  Google Scholar 

  • Wright RJ, Thaxton PM, El-Zik KM, Paterson AH (1999) Molecular mapping of genes affecting pubescence of cotton. J Hered 90:215–219

    Article  CAS  Google Scholar 

  • Wu J, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2009) Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of Upland cotton. Euphytica 165:231–245

    Article  Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genet 165:2259–2268

    Google Scholar 

  • You A, Lu X, Jin H, Ren X, Liu K, Yang G, Yang H, Zhu L, He G (2006) Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genet 172:1287–1300

    Article  Google Scholar 

  • Yu JW, Yu SX, Liu C, Wu W, Fan SL, Song MZ, Lin ZX, Zhang XL, Zhang JF (2007) High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol 49:716–724

    Article  CAS  Google Scholar 

  • Yu Y, Yuan D, Liang S, Li X, Wang X, Lin Z, Zhang X (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12:15

    Article  CAS  PubMed  Google Scholar 

  • Yu JW, Yu SX, Zhang K, Fan SL, Song MZ, Zhai HH, Li XL, Huang SL, Zhang HW, Zhang JF (2012) Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Euphytica 187:191–201

    Article  Google Scholar 

  • Yu JW, Zhang K, Li SY, Yu SX, Zhai HH, Wu M, Li XL, Fan SL, Song MZ, Yang DG, Li YH, Zhang JF (2013) Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor Appl Genet 126:275–287

    Article  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genet 136:1457–1468

    CAS  Google Scholar 

  • Zhang JF, Percy RG (2007) Improving Upland cotton by introducing desirable genes from Pima cotton. World Cotton Res Conf (http://wcrc.confex.com/wcrc/2007/techprogram/P1901.HTM). Accessed 1 Feb 2013

  • Zhang JF, Lu Y, Cantrell RG, Hughs SE (2005a) Molecular marker diversity and field performance in commercial cotton cultivars evaluated in the southwest USA. Crop Sci 45:1483–1490

    Article  CAS  Google Scholar 

  • Zhang JF, Lu Y, Adragna H, Hughs SE (2005b) Genetic improvement of New Mexico Acala cotton germplasm and their genetic diversity. Crop Sci 45:2363–2373

    Article  CAS  Google Scholar 

  • Zhang Z, Hu M, Zhang J, Liu D, Zheng J, Zhang K, Wang W, Wan Q (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the National Basic Research Program of China (i.e. “973” Program) (No. 2010CB126006) and the National High Technology Research and Development Program of China (i.e. “863” Program) (No. 2012AA101108); and the New Mexico Agricultural Experiment Station, New Mexico, USA. This research was supported in part by USDA-ARS (M.A.G.). Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. The USDA is equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuxun Yu or Jinfa Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Yu, S., Gore, M. et al. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica 191, 375–389 (2013). https://doi.org/10.1007/s10681-013-0875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0875-5

Keywords

Navigation