Skip to main content
Log in

Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Studies in diploid parental species of polyploid plants are important to understand their contributions to the formation of plant and species evolution. Coffea eugenioides is a diploid species that is considered to be an ancestor of allopolyploid Coffea arabica together with Coffea canephora. Despite its importance in the evolutionary history of the main economic species of coffee, no study has focused on C. eugenioides molecular genetics. RNA-seq creates the possibility to generate reference transcriptomes and identify coding genes and potential candidates related to important agronomic traits. Therefore, the main objectives were to obtain a global overview of transcriptionally active genes in this species using next-generation sequencing and to analyze specific genes that were highly expressed in leaves and fruits with potential exploratory characteristics for breeding and understanding the evolutionary biology of coffee. A de novo assembly generated 36,935 contigs that were annotated using eight databases. We observed a total of ~5000 differentially expressed genes between leaves and fruits. Several genes exclusively expressed in fruits did not exhibit similarities with sequences in any database. We selected ten differentially expressed unigenes in leaves and fruits to evaluate transcriptional profiles using qPCR. Our study provides the first gene catalog for C. eugenioides and enhances the knowledge concerning the mechanisms involved in the C. arabica homeologous. Furthermore, this work will open new avenues for studies into specific genes and pathways in this species, especially related to fruit, and our data have potential value in assisted breeding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Athanasiou K, Dyson BC, Webster RE, Johnson GN (2010) Dynamic acclimation of photosynthesis increases plant fitness in changing environments. Plant Physiol 152:366–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36:652–663

    Article  PubMed  CAS  Google Scholar 

  • Bak S, Nielsen HL, Halkier BA (1998) The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol Biol 38:725–734

    Article  PubMed  CAS  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. PNAS USA 103:17042–17047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Böhmer M, Schroeder JI (2011) Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J 67:105–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim EK, Bowles DJ, Davies GJ, Edwards R (2007) Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. PNAS USA 104:20238–20243

    Article  PubMed  PubMed Central  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Caputi L, Malnoy M, Goremykin V, Nikiforova S, Martens S (2012) A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J 69:1030–1042

    Article  PubMed  CAS  Google Scholar 

  • Carvalho K, Bespalhok Filho JC, Dos Santos TB, de Souza SGH, Vieira LGE, Pereira LFP, Domingues DS (2013) Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): identification and validation of new genes for qPCR normalization. Mol Biotechnol 53:315–325

    Article  PubMed  CAS  Google Scholar 

  • Carvalho K, Petkowicz CL, Nagashima GT, Bespalhok Filho JC, Vieira LG, Pereira LF, Domingues DS (2014) Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica. Mol Genet Genomics 289:951–963

    Article  PubMed  CAS  Google Scholar 

  • Cenci A, Combes MC, Lashermes P (2012) Genome evolution in diploid and tetraploid Coffea species. Plant Mol Biol 78:135–145

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen PJ, Senthilkumar R, Jane WN, He Y, Tian Z, Yeh KW (2014) Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol J 12:503–515

    Article  PubMed  CAS  Google Scholar 

  • Combes MC, Cenci A, Baraille H, Bertrand B, Lashermes P (2012) Homeologous gene expression in response to growing temperature in a recent allopolyploid (Coffea arabica L.). J Hered 103:36–46

    Article  PubMed  CAS  Google Scholar 

  • Combes MC, Dereeper A, Severac D, Bertrand B, Lashermes P (2013) Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. New Phytol 200:251–260

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) BLAST2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Cotta MG, Barros LMG, Almeida JD, De Lamotte F, Barbosa EA, Vieira NG, Alves GS, Vinecky F, Andrade AC, Marraccini P (2014) Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants. Plant Mol Biol 85:11–31

    PubMed  CAS  Google Scholar 

  • Cruz F, Kalaoun S, Nobile P, Colombo C, Almeida J, Barros LM, Romano E, Grossi de Sá MF, Barros LMG, Alves-Ferreira M (2009) Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol Breed 23:607–616

    Article  CAS  Google Scholar 

  • Denoeud F, Carretero-Paulet L, Dereeper A et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184

    Article  PubMed  CAS  Google Scholar 

  • Dong S, Adams KL (2011) Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. New Phytol 190:1045–1057

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S (2010) Regulation of two germin-like protein genes during plum fruit development. J Exp Bot 61:1761–1770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan H, Xiao Y, Yang Y, Xia W, Mason AS, Xia Z, Qiao F, Zhao S, Tang H (2013) RNA-seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. PLoS One 8:e59997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez D, Santos P, Agostini C, Bon MC, Petitot AS, Silva MC, Guerra-Guimarães L, Ribeiro A, Argout X, Nicole M (2004) Coffee (Coffea arabica L.) genes early expressed during infection by the rust fungus (Hemileia vastatrix). Mol Plant Pathol 5:527–536

    Article  PubMed  CAS  Google Scholar 

  • Flagel LE, Chen L, Chaudhary B, Wendel JF (2009) Coordinated and fine-scale control of homoeologous gene expression in allotetraploid cotton. J Hered 100:487–490

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Rider LW, Chapple C (2005) An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. Plant Physiol 138:1136–1148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan D, Jiang H, Zhang J, Zhao Y, Zhu S, Cheng B (2011) Genome-wide analysis of BURP domain-containing genes in Maize and Sorghum. Mol Biol Rep 38:4553–4563

    Article  PubMed  CAS  Google Scholar 

  • Geromel C, Ferreira LP, Guerreiro SMC, Cavalari AA, Pot D, Pereira LFP, Leroy T, Vieira LGE, Mazzafera P, Marraccini P (2006) Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. J Exp Bot 57:3243–3258

    Article  PubMed  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F, Birren BW, Chad Nusbaum, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Granger C, Coryell V, Khanna A, Keim P, Vodkin L, Shoemaker RC (2002) Identification, structure, and differential expression of members of a BURP domain containing protein family in soybean. Genome 45:693–701

    Article  PubMed  CAS  Google Scholar 

  • Guerra-Guimarães L, Silva MC, Struck C, Loureiro A, Nicole M, Rodrigues CJ Jr, Ricardo CPP (2009) Chitinases of Coffea arabica genotypes resistant to orange rust Hemileia vastatrix. Biol Plant 53:702–706

    Article  CAS  Google Scholar 

  • Guyot R, Lefebvre-Pautigny F, Tranchant-Dubreuil C, Rigoreau M, Hamon P, Leroy T, Hamon S, Poncet V, Crouzillat D, Kochko A (2012) Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum sp.) and rosid (Vitis vinifera) clades. BMC Genomics 13:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heisel TJ, Li CY, Grey KM, Gibson SI (2013) Mutations in HISTONE ACETYLTRANSFERASE1 affect sugar response and gene expression in Arabidopsis. Front Plant Sci 4:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hermans C, Porco S, Vandenbussche F, Gille S, De Pessemier J, Van Der Straeten D, Verbruggen N, Bush DR (2011) Dissecting the role of CHITINASE-LIKE1 in nitrate-dependent changes in root architecture. Plant Physiol 157:1313–1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holscher W, Steinhart H (1995) Aroma compounds in green coffee. Dev Food Sci 37:785–803

    Article  Google Scholar 

  • Hurkman WJ, Tanaka CK (1996) Effect of salt stress on germin gene expression in barley roots. Plant Physiol 110:971–977

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson S, Chen ZJ (2010) Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol 13:153–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  PubMed  CAS  Google Scholar 

  • Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, de Kochko A, Dussert S (2009) Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study. New Phytol 182:146–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunz HH, Häusler RE, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flügge UI, Schneider A (2010) The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol 12:115–128

    Article  PubMed  CAS  Google Scholar 

  • Langenbach C, Campe R, Schaffrath U, Goellner K, Conrath U (2013) UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. New Phytol 198:536–545

    Article  PubMed  CAS  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    Article  PubMed  CAS  Google Scholar 

  • Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A (2013) ESTHER, the database of the a/b-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 41:D423–D429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leroy T, Ribeyre F, Bertrand B, Charmetant P, Dufour M, Montagnon C, Marraccini P, Pot D (2006) Genetics of coffee quality. Braz J Plant Physiol 18:229–242

    Article  CAS  Google Scholar 

  • Lin C, Mueller LA, Mc Carthy J, Crouzillat D, Petiard V, Tanksley SD (2005) Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Genet 112:114–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazzafera P, Carvalho A (1992) Breeding for low seed caffeine content of coffee (Coffea L.) by interspecific hybridization. Euphytica 59:55–60

    Google Scholar 

  • Mochida K, Yamazaki Y, Ogihara Y (2003) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 270:371–377

    Article  PubMed  CAS  Google Scholar 

  • Mondego JMC, Vidal RO, Carazzolle MF et al (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niewiadomski P, Knappe S, Geimer S, Fischer K, Schulz B, Unte US, Rosso MG, Ache P, Flügge UI, Schneider A (2005) The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 17:760–775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohmiya A (2002) Characterization of ABP19/20, sequence homologues of germin-like protein in Prunus persica L. Plant Sci 163:683–689

    Article  CAS  Google Scholar 

  • Ohmiya A, Tanaka Y, Kadowaki K, Hayashi T (1998) Cloning of genes encoding auxin-binding proteins (ABP19/20) from peach: significant peptide sequence similarity with germin-like proteins. Plant Cell Physiol 39:492–499

    Article  PubMed  CAS  Google Scholar 

  • Osmani SA, Bak S, Moller BL (2009) Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70:325–347

    Article  PubMed  CAS  Google Scholar 

  • Passarinho PA, Vries SC (2002) Arabidopsis chitinases: a genomic survey. Arabidopsis Book 1:e0023

    Article  PubMed  PubMed Central  Google Scholar 

  • Petitot AS, Lecouls AC, Fernandez D (2008) Sub-genomic origin and regulation patterns of a duplicated WRKY gene in the allotetraploid species Coffea arabica. Tree Genet Genomes 4:379–390

    Article  Google Scholar 

  • Poncet V, Rondeau M, Tranchant C, Cayrel A, Hamon S, de Kochko A, Hamon P (2006) SSR mining in coffee tree EST databases: potential use of EST–SSRs as markers for the Coffea genus. Mol Genet Genomics 276:436–449

    Article  PubMed  CAS  Google Scholar 

  • Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. PNAS USA 102:15253–15258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224:556–568

    Article  PubMed  CAS  Google Scholar 

  • Privat I, Foucrier S, Prins A, Epalle T, Eychenne M, Kandalaft L, Caillet V, Lin C, Tanksley S, Foyer C, McCarthy J (2008) Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis. New Phytol 178:781–797

    Article  PubMed  CAS  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Rivas F, Parra A, Martinez, Garcia-Granados A (2013) Enzymatic glycosylation of terpenoids. Phytochem Rev 12:327–339

    Article  CAS  Google Scholar 

  • Sasaki C, Varum KM, Itoh Y, Tamoi M, Fukamizo T (2006) Rice chitinases: sugar recognition specificities of the individual subsites. Glycobiology 16:1242–1250

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Rawat V, Suresh CG (2014) Genome-wide identification and tissue-specific expression analysis of UDP-glycosyltransferases genes confirm their abundance in Cicer arietinum (Chickpea) genome. PLoS One 9:e109715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibuya M, Nishimura K, Yasuyama N, Ebizuka Y (2010) Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Lett 584:2258–2264

    Article  PubMed  CAS  Google Scholar 

  • Shirley AM, McMichael CM, Chapple C (2001) The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant J 28:83–94

    Article  PubMed  CAS  Google Scholar 

  • Staiger D, Apel K, Trepp G (1999) The Atger3 promoter confers circadian clock-regulated transcription with peak expression at the beginning of the night. Plant Mol Biol 40:873–882

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75:687–706

    Article  PubMed  CAS  Google Scholar 

  • TAIR—The Arabidopsis Information Resource (2014). http://www.arabidopsis.org/aboutarabidopsis.html. Accessed 25 Feb 2014

  • Takenaka Y, Nakano S, Tamoi M, Sakuda S, Fukamizo T (2009) Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana: chitinase inhibitor allosamidin enhances stress tolerance. Biosci Biotechnol Biochem 73:1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev 8:149–170

    Article  CAS  Google Scholar 

  • The UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198

    Article  PubMed Central  CAS  Google Scholar 

  • Toledo-Silva G, Cardoso-Silva CB, Jank L, Souza AP (2013) De novo transcriptome assembly for the tropical grass Panicum maximum Jacq. PLoS One 8:e70781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y, Vandepoele K (2012) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158:590–600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Son L, Tiedemann J, Rutten T, Hillmer S, Hinz G, Zank T, Manteuffel R, Bäumlein H (2009) The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development. Plant Mol Biol 71:319–329

    Article  PubMed  CAS  Google Scholar 

  • Veljanovski V, Constabel CP (2013) Molecular cloning and biochemical characterization of two UDP-glycosyltransferases from poplar. Phytochemistry 91:148–157

    Article  PubMed  CAS  Google Scholar 

  • Vidal RO, Mondego JM, Pot D, Ambrósio AB, Andrade AC, Pereira LF, Colombo CA, Vieira LG, Carazzolle MF, Pereira GA (2010) A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica. Plant Physiol 154:1053–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vieira LGE, Andrade AC, Colombo CA et al (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108

    Article  CAS  Google Scholar 

  • Wajant H, Mundry K, Pfizenmaier K (1994) Molecular cloning of hydroxynitrile lyase from Sorghum bicolor (L.). Homologies to serine carboxypeptidases. Plant Mol Biol 26:735–746

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem 275:14659–14666

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z (2012) Brittle Culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol 159:1440–1452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu B, Gou JY, Li FG, Shangguan XX, Zhao B, Yang CQ, Wang LJ, Yuan S, Liu CJ, Chen XY (2013) A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production. Mol Plant 6:945–958

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Guyot R, de Kochko A, Byers A, Navajas-Pérez R, Langston BJ, Dubreuil-Tranchant C, Paterson AH, Poncet V, Nagai C, Ming R (2011) Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). Plant J 67:305–317

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wu K, Zeng S, da Silva JAT, Zhao X, Tian CE, Xia H, Duan J (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genomics 14:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to thank João Batista Gonçalves Dias da Silva (COCARI) for providing the C. eugenioides leaves and fruits used in this study and Juliana Costa Silva (UTFPR-Cornélio Procópio) for bioinformatics assistance. This work was funded by CAPES/Agropolis (1002-02 PHEGECO), CNPq, INCT-Café, FINEP (01.05.0665-00) and Fundação Araucária. We acknowledge the scholarships from CAPES (Priscila M. Yuyama, Suzana T. Ivamoto). Luiz Filipe P. Pereira received a research fellowship from CNPq. We also acknowledge the Center for Computational Engineering and Sciences at UNICAMP, SP, Brazil (FAPESP/CEPID project #2013/08293-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Filipe Protasio Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experiments in this manuscript comply with the current laws of the country in which they were performed. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

P. M. Yuyama, O. Reis Júnior and S. T. Ivamoto contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2015_1111_MOESM1_ESM.tif

Supplementary material 1 Fig. S1 Contigs length distribution in C. eugenioides. Size distribution of the contigs obtained from de novo assembly of high quality clean reads (TIFF 9874 kb)

438_2015_1111_MOESM2_ESM.tif

Supplementary material 2 Fig. S2 C. eugenioides contigs involved in the starch and sucrose pathway using KEGG. All colored E.C. numbers (square) are the contigs with similarity (>1e-5) to their respective protein described for this metabolic pathway. Colors are used to differentiate the different enzymes within one map and enzymes with the same colors are the same (TIFF 11557 kb)

438_2015_1111_MOESM3_ESM.tif

Supplementary material 3 Fig. S3 Relative expression values of unigenes up-regulated in leaves (green) and fruits (red) organs by qPCR (Ct values scale). Bars represent the standard deviation values (TIFF 7494 kb)

438_2015_1111_MOESM4_ESM.tif

Supplementary material 4 Fig. S4 Phylogenetic analysis of C. eugenioides, A. thaliana and P. trichocarpa BURP genes. The abbreviations of species names are as follows: CE, Coffea eugenioides; AT, Arabidopsis thaliana; and PT, Populus trichocarpa. Bootstrap values are indicated in percentage (TIFF 13599 kb)

438_2015_1111_MOESM5_ESM.xls

Supplementary material 5 Table S1 Description based on the blast hit obtained by a sequential blast search of three protein databases (NCBI-nr, Swiss-Prot and PlantCyc) for the all C. eugenioides contigs (XLS 8163 kb)

438_2015_1111_MOESM6_ESM.xls

Supplementary material 6 Table S2 The 100 top-hit species distribution of BLAST matches of C. eugenioides contigs. The BLASTX score was defined as 1e-5 (XLS 42 kb)

438_2015_1111_MOESM7_ESM.xls

Supplementary material 7 Table S3 C. eugenioides contigs not annotated in Coffea EST database. a No hits genes in C. arabica ESTs b No hits genes in C. canephora CDS (XLS 2990 kb)

438_2015_1111_MOESM8_ESM.xls

Supplementary material 8 Table S4 Domains description of InterProScan in C. eugenioides contigs. 4a Output direct results of InterProScan domains. 4b Data used in Fig. 1, after manual filter of InterProScan annotation (XLS 586 kb)

438_2015_1111_MOESM9_ESM.xls

Supplementary material 9 Table S5 Description of 20 contigs with high expression levels in leaves and fruits and annotations in NCBI-nr and Swiss-Prot database. The BLASTX score was defined as 1e-5 (XLS 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuyama, P.M., Reis Júnior, O., Ivamoto, S.T. et al. Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Mol Genet Genomics 291, 323–336 (2016). https://doi.org/10.1007/s00438-015-1111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1111-x

Keywords

Navigation