Skip to main content
Log in

Genome evolution in diploid and tetraploid Coffea species as revealed by comparative analysis of orthologous genome segments

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Sequence comparison of orthologous regions enables estimation of the divergence between genomes, analysis of their evolution and detection of particular features of the genomes, such as sequence rearrangements and transposable elements. Despite the economic importance of Coffea species, little genomic information is currently available. Coffea is a relatively young genus that includes more than one hundred diploid species and a single tetraploid species. Three Coffea orthologous regions of 470–900 kb were analyzed and compared: both subgenomes of allotetraploid Coffea arabica (contributed by the diploid species Coffea eugenioides and Coffea canephora) and the genome of diploid C. canephora. Sequence divergence was calculated on global alignments or on coding and non-coding sequences separately. A search for transposable elements detected 43 retrotransposons and 198 transposons in the sequences analyzed. Comparative insertion analysis made it possible to locate 165 TE insertions in the phylogenetic tree of the three genomes/subgenomes. In the tetraploid C. arabica, a homoeologous non-reciprocal transposition (HNRT) was detected and characterized: a 50 kb region of the C. eugenioides derived subgenome replaced the C. canephora derived counterpart. Comparative sequence analysis on three Coffea genomes/subgenomes revealed almost perfect gene synteny, low sequence divergence and a high number of shared transposable elements. Compared to the results of similar analysis in other genera (Aegilops/Triticum and Oryza), Coffea genomes/subgenomes appeared to be dramatically less diverged, which is consistent with the relatively recent radiation of the Coffea genus. Based on nucleotide substitution frequency, the HNRT was dated at 10,000–50,000 years BP, which is also the most recent estimation of the origin of C. arabica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ammiraju JSS, Lu F, Sanyal A, Yu Y, Song X, Jiang N, Pontaroli AC, Rambo T, Currie J, Collura K, Talag J, Fan C, Goicoechea JL, Zuccolo A, Chen J, Bennetzen JL, Chen M, Jackson S, Wing RA (2008) Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell 20:3191–3209. doi:10.1105/tpc.108.063727

    Article  PubMed  CAS  Google Scholar 

  • Andreasen K, Baldwin BG (2001) Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S–26S rDNA internal and external transcribed spacers. Mol Biol Evol 18:936–944

    PubMed  CAS  Google Scholar 

  • Anthony F, Diniz LEC, Combes M-C, Lashermes P (2010) Adaptive radiation in Coffea subgenus Coffea L. (Rubiaceae) in Africa and Madagascar. Plant Syst Evol 285:51–64. doi:10.1007/s00606-009-0255-8

    Article  Google Scholar 

  • Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Green ED, Sidow A, Batzoglou S (2003) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13:721–731. doi:10.1101/gr.926603

    Article  PubMed  CAS  Google Scholar 

  • Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916. doi:10.1105/tpc.6.6.907

    Article  PubMed  CAS  Google Scholar 

  • Cenci A, Combes M-C, Lashermes P (2010) Comparative sequence analyses indicate that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral genome. Mol Genet Genomics 283:493–501. doi:10.1007/s00438-010-0534-7

    Article  PubMed  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier M-F, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045. doi:10.1105/tpc.104.029181

    Article  PubMed  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier M-F, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Leroy P, Bernard M, Chalhoub B (2008) Contrasted microcolinearity and gene evolution within a homoeologous region of wheat and barley species. J Mol Evol 66:138–150. doi:10.1007/s00239-008-9066-8

    Article  PubMed  CAS  Google Scholar 

  • Cho K, O’Neill CM, Kwon S-J, Yang T-J, Smooker AM, Fraser F, Bancroft I (2010) Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci. Plant J 61:591–599. doi:10.1111/j.1365-313X.2009.04084.x

    Article  PubMed  CAS  Google Scholar 

  • Couronne O, Poliakov A, Bray N, Ishkhanov T, Ryaboy D, Rubin E, Pachter L, Dubchak I (2003) Strategies and tools for whole-genome alignments. Genome Res 13:73–80. doi:10.1101/gr.762503

    Article  PubMed  CAS  Google Scholar 

  • Du C, Caronna J, He L, Dooner HK (2008) Computational prediction and molecular confirmation of Helitron transposons in the maize genome. BMC Genomics 9:51. doi:10.1186/1471-2164-9-51

    Article  PubMed  Google Scholar 

  • Dussert S, Lashermes P, Anthony F, Montagnon C, Trouslot P, Combes MC, Berthaud J, Noirot N, Hamon S (1999) Le caféier, Coffea canephora. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Diversité Génétique des Plantes Tropicales Cultivées. CIRAD, Montpellier, pp 175–194

    Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578. doi:10.1073/pnas.132259199

    PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires JC (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28. doi:10.1111/j.1469-8137.2009.03089.x

    Article  PubMed  CAS  Google Scholar 

  • Gomez C, Dussert S, Hamon P, Hamon S, Kochko AD, Poncet V (2009) Current genetic differentiation of Coffea canephora Pierre ex A. Froehn in the Guineo-Congolian African zone: cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:167. doi:10.1186/1471-2148-9-167

    Article  PubMed  Google Scholar 

  • Grassias M, Kammacher P (1975) Observations sur la conjugaison chromosomique de Coffea arabica L. Café Cacao Thé 19:177–190

    Google Scholar 

  • Heslop-Harrison JS, Brandes A, Taketa S, Schmidt T, Vershinin AV, Alkhimova EG, Kamm A, Doudrick RL, Schwarzacher T, Katsiotis A, Kubis S, Kumar A, Pearce SR, Flavell AJ, Harrison GE (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100:197–204

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138. doi:10.1073/pnas.072223799

    Article  PubMed  CAS  Google Scholar 

  • Hua-Van A, Le Rouzic A, Maisonhaute C, Capy P (2005) Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet Genome Res 110:426–440. doi:10.1159/000084975

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury J, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. doi:10.1038/nature06148

    Article  PubMed  CAS  Google Scholar 

  • Laroche J, Bousquet J (1999) Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. Mol Biol Evol 16:441–452

    PubMed  CAS  Google Scholar 

  • Lashermes P, Combes M-C, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266. doi:10.1007/s004380050965

    Article  PubMed  CAS  Google Scholar 

  • Lashermes P, Paczek V, Trouslot P, Combes MC, Couturon E, Charrier A (2000) Single-locus inheritance in the allotetraploid Coffea arabica L. and interspecific Hybrid C. arabica × C. canephora. J Hered 91:81–85. doi:10.1093/jhered/91.1.81

    Article  PubMed  CAS  Google Scholar 

  • Lashermes P, Combes M, Ribas A, Cenci A, Mahé L, Etienne H (2010) Genetic and physical mapping of the S H 3 region that confers resistance to leaf rust in coffee tree (Coffea arabica L.). Tree Genet Genomes 6:973–980. doi:10.1007/s11295-010-0306-x

    Article  Google Scholar 

  • Le QH, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:7376–7381

    Article  PubMed  CAS  Google Scholar 

  • Lin J-Y, Stupar RM, Hans C, Hyten DL, Jackson SA (2010) Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris. Plant Cell 22:2545–2561. doi:10.1105/tpc.110.074229

    Article  PubMed  CAS  Google Scholar 

  • Mahé L, Combes M-C, Lashermes P (2007) Comparison between a coffee single copy chromosomal region and Arabidopsis duplicated counterparts evidenced high level synteny between the coffee genome and the ancestral Arabidopsis genome. Plant Mol Biol 64:699–711. doi:10.1007/s11103-007-9191-6

    Article  PubMed  Google Scholar 

  • Musoli P, Cubry P, Aluka P, Billot C, Dufour M, De Bellis F, Pot D, Bieyesse D, Charrier A, Leroy T (2009) Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome 52:634–646. doi:10.1139/G09-037

    Article  PubMed  CAS  Google Scholar 

  • Nassif N, Penney J, Pal S, Engels WR, Gloor GB (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol 14:1613–1625

    PubMed  CAS  Google Scholar 

  • Noir S, Patheyron S, Combes M-C, Lashermes P, Chalhoub B (2004) Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.). Theor Appl Genet 109:225–230. doi:10.1007/s00122-004-1604-1

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94. doi:10.1126/science.1180677

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474. doi:10.1111/j.1365-313X.2006.02891.x

    Article  PubMed  CAS  Google Scholar 

  • Prakash NS, Combes M-C, Dussert S, Naveen S, Lashermes P (2005) Analysis of genetic diversity in Indian robusta coffee genepool (Coffea canephora) in comparison with a representative core collection using SSRs and AFLPs. Genet Resour Crop Evol 52:333–343. doi:10.1007/s10722-003-2125-5

    Article  CAS  Google Scholar 

  • Raina SN, Mukay Y, Yamamoto M (1998) In situ hybridization identifies the diploid progenitor species of Coffea arabica (Rubiaceae). Theor Appl Genet 97:1204–1209. doi:10.1007/s001220051011

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639. doi:10.1146/annurev.ecolsys.33.010802.150437

    Article  Google Scholar 

  • Ribas A, Cenci A, Combes M-C, Etienne H, Lashermes P (2011) Organization and molecular evolution of a disease-resistance gene cluster in coffee trees. BMC Genomics 12:240. doi:10.1186/1471-2164-12-240

    Article  PubMed  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  • Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134. doi:10.1111/j.1469-8137.2009.03093.x

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24. doi:10.1105/tpc.107.056309

    Article  PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. doi:10.1038/35048692

    Article  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple J, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi:10.1126/science.1128691

    Google Scholar 

  • Udall JA, Osborn TC, Quijada PA (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979. doi:10.1534/genetics.104.033209

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JF, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. doi:10.1038/nrg2165

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341. doi:10.1038/35072009

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Guyot R, de Kochko A, Byers A, Navajas-Pérez R, Langston BJ, Dubreuil-Tranchant C, Paterson AH, Poncet V, Nagai C, Ming R (2011) Microcolinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). Plant J (in press). doi:10.1111/j.1365-313X.2011.04590.x

  • Yue J-X, Li J, Wang D, Araki H, Tian D, Yang S (2010) Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC Plant Biol 10:242. doi:10.1186/1471-2229-10-242

    Article  PubMed  Google Scholar 

  • Zuccolo A, Sebastian A, Talag J, Yu Y, Kim HR, Collura K, Kudrna D, Wing RA (2007) Transposable element distribution, abundance and role in genome size variation in the genus Oryza. BMC Evol Biol 7:152. doi:10.1186/1471-2148-7-152

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

A. Cenci was supported by Grant from ANR, The French National Research Agency (Project ANR-09-GEMN-014-002, CoffeaSeq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cenci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cenci, A., Combes, MC. & Lashermes, P. Genome evolution in diploid and tetraploid Coffea species as revealed by comparative analysis of orthologous genome segments. Plant Mol Biol 78, 135–145 (2012). https://doi.org/10.1007/s11103-011-9852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9852-3

Keywords

Navigation