Skip to main content
Log in

Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Knowledge of population structure and linkage disequilibrium among the worldwide collections of peppers currently classified as hot, mild, sweet and ornamental types is indispensable for applying association mapping and genomic selection to improve pepper. The current study aimed to resolve the genetic diversity and relatedness of Capsicum annuum germplasm by use of simple sequence repeat (SSR) loci across all chromosomes in samples collected in 2011 and 2012. The physical distance covered by the entire set of SSRs used was 2,265.9 Mb from the 3.48-Gb hot-pepper genome size. The model-based program STRUCTURE was used to infer five clusters, which was further confirmed by classical molecular-genetic diversity analysis. Mean heterozygosity of various loci was estimated to be 0.15. Linkage disequilibrium (LD) was used to identify 17 LD blocks across various chromosomes with sizes from 0.154 Kb to 126.28 Mb. CAMS-142 of chromosome 1 was significantly associated with both capsaicin (CA) and dihydrocapsaicin (DCA) levels. Further, CAMS-142 was located in an LD block of 98.18 Mb. CAMS-142 amplified bands of 244, 268, 283 and 326 bp. Alleles 268 and 283 bp had positive effects on both CA and DCA levels, with an average R 2 of 12.15 % (CA) and 12.3 % (DCA). Eight markers from seven different chromosomes were significantly associated with fruit weight, contributing an average effect of 15 %. CAMS-199, HpmsE082 and CAMS-190 are the three major quantitative trait loci located on chromosomes 8, 9, and 10, respectively, and were associated with fruit weight in samples from both years of the study. This research demonstrates the effectiveness of using genome-wide SSR-based markers to assess features of LD and genetic diversity within C. annuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar-Melendez A, Morrell PL, Roose ML, Kim S-C (2009) Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. Am J Bot 96(6):1190–1202

    Article  CAS  PubMed  Google Scholar 

  • Arumugasundaram S, Ghosh M, Veerasamy S, Ramasamy Y (2011) Species discrimination, population structure and linkage disequilibrium in Eucalyptus camaldulensis and Eucalyptus tereticornis using SSR markers. PLoS One 6(12):e28252. doi:10.1371/journal.pone.0028252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ben Chaim A, Paran I, Grube RC, Jahn M, van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102(6–7):1016–1028

    Article  Google Scholar 

  • Ben Chaim A, Borovsky Y, Rao GU, Tanyolac B, Paran I (2003) fs3.1: a major fruit shape QTL conserved in Capsicum. Genome 46(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40(6):800–804

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Franco J (2004) Statistical methods for classifying genotypes. Euphytica 137(1):19–37

    Article  CAS  Google Scholar 

  • D’hoop B, Paulo MJ, Kowitwanich K, Sengers M, Visser RF, Eck H, Eeuwijk F (2010) Population structure and linkage disequilibrium unravelled in tetraploid potato. Theor Appl Genet 121(6):1151–1170

    Article  PubMed Central  PubMed  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater J, Zyprian E, Moreira F, Grando M (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13(1):1–17

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99(6):978–987

    Article  CAS  Google Scholar 

  • Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2(12):e1367. doi:10.1371/journal.pone.0001367

    Article  PubMed Central  PubMed  Google Scholar 

  • Han K, Jeong H-J, Sung J, Keum Y, Cho M-C, Kim J-H, Kwon J-K, Kim B-D, Kang B-C (2013) Biosynthesis of capsinoid is controlled by the Pun1 locus in pepper. Mol Breed 31(3):537–548. doi:10.1007/s11032-012-9811-y

    Article  CAS  Google Scholar 

  • Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One 6(2):e17279. doi:10.1371/journal.pone.0017279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hernández-Verdugo S, Luna-Reyes R, Oyama K (2001) Genetic structure and differentiation of wild and domesticated populations of Capsicum annuum (Solanaceae) from Mexico. Plant Syst Evol 226(3–4):129–142. doi:10.1007/s006060170061

    Article  Google Scholar 

  • Hill TA, Ashrafi H, Reyes-Chin-Wo S, Yao J, Stoffel K, Truco M-J, Kozik A, Michelmore RW, Van Deynze A (2013) Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30 K unigene pepper genechip. PLoS One 8(2):e56200. doi:10.1371/journal.pone.0056200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121(3):475–487

    Article  PubMed  Google Scholar 

  • Liu S-R, Li W-Y, Long D, Hu C-G, Zhang J-Z (2013) Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis. PLoS One 8(10):e75149. doi:10.1371/journal.pone.0075149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Microsatellites in Zea—variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104(2–3):436–450

    Article  CAS  PubMed  Google Scholar 

  • Mazourek M, Pujar A, Borovsky Y, Paran I, Mueller L, Jahn MM (2009) A dynamic interface for capsaicinoid systems biology. Plant Physiol 150(4):1806–1821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breed 18(2):157–169

    Article  CAS  Google Scholar 

  • Munos S, Ranc N, Botton E, Berard A, Rolland S, Duffe P, Carretero Y, Le Paslier MC, Delalande C, Bouzayen M, Brunel D, Causse M (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156(4):2244–2254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohashi J, Tokunaga K (2003) Power of genome-wide linkage disequilibrium testing by using microsatellite markers. J Hum Genet 48(9):487–491

    Article  CAS  PubMed  Google Scholar 

  • Paran I (2003) Marker-assisted utilization of exotic germplam. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. Marcel Dekker, New York

    Google Scholar 

  • Paran I, Aftergoot E, Shifriss C (1998) Variation in Capsicum annuum revealed by RAPD and AFLP markers. Euphytica 99(3):167–173

    Article  CAS  Google Scholar 

  • Pickersgill (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133

    Article  Google Scholar 

  • Portis E, Barchi L, Acquadro A, Macua JI, Lanteri S (2005) Genetic diversity assessment in cultivated cardoon by AFLP (amplified fragment length polymorphism) and microsatellite markers. Plant Breed 124(3):299–304

    Article  CAS  Google Scholar 

  • Powis TG, Gallaga Murrieta E, Lesure R, Lopez Bravo R, Grivetti L, Kucera H, Gaikwad NW (2013) Prehispanic use of chili peppers in Chiapas, Mexico. PLoS One 8(11):e79013. doi:10.1371/journal.pone.0079013

    Article  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy UK, Almeida A, Abburi VL, Alaparthi SB, Unselt D, Hankins G, Park M, Choi D, Nimmakayala P (2014) Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections. PLoS One 9(1):e86393. doi:10.1371/journal.pone.0086393

    Article  PubMed Central  PubMed  Google Scholar 

  • Reyes-Valdés MH, Santacruz-Varela A, Martínez O, Simpson J, Hayano-Kanashiro C, Cortés-Romero C (2013) Analysis and optimization of bulk DNA sampling with binary scoring for germplasm characterization. PLoS One 8(11):e79936. doi:10.1371/journal.pone.0079936

    Article  PubMed Central  PubMed  Google Scholar 

  • Robbins MD, Sim S-C, Yang W, Van Deynze A, van der Knaap E, Joobeur T, Francis DM (2011) Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J Exp Bot 62(6):1831–1845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103–106

    Article  PubMed  Google Scholar 

  • Schneider, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis User manual

  • Sidak Z (1967) Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc 62(318):626–633

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One 6(6):e21298. doi:10.1371/journal.pone.0021298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugita T, Semi Y, Sawada H, Utoyama Y, Hosomi Y, Yoshimoto E, Maehata Y, Fukuoka H, Nagata R, Ohyama A (2013) Development of simple sequence repeat markers and construction of a high-density linkage map of Capsicum annuum. Mol Breed 31(4):909–920

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21(7):1214–1225

    Article  CAS  PubMed  Google Scholar 

  • Tomason Y, Nimmakayala P, Levi A, Reddy U (2013) Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed 31(4):829–841

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Article  Google Scholar 

  • Yarnes SC, Ashrafi H, Reyes-Chin-Wo S, Hill TA, Stoffel KM, Van Deynze A, Gulick P (2012) Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome 56(1):61–74

    Article  Google Scholar 

  • Yeh YR, Boyle T (1999) POPGENE Version 1.31. Microsoft Window-based Freeware for Population Genetic Analysis Quick User Guide

  • Yi G, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114(1):113–130

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hao C, Ren Q, Chang X, Liu G, Jing R (2011) Association mapping of dynamic developmental plant height in common wheat. Planta 234(5):891–902

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3(1):e4

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Gen 1(1):5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study received funding from USDA-NIFA (2010-38821-21574), NSF-EPSCOR#09-570 - EPS-1003907, NIH Grant P20RR016477 to the West Virginia IDeA Network for Biomedical Research Funding and the Gus R. Douglass Institute (graduate research assistantship to V. Abburi).

Conflict of interest

We declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh K. Reddy.

Additional information

Communicated by S. Hohmann.

P. Nimmakayala, V. L. Abburi and U. K. Reddy contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimmakayala, P., Abburi, V.L., Abburi, L. et al. Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping. Mol Genet Genomics 289, 513–521 (2014). https://doi.org/10.1007/s00438-014-0827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0827-3

Keywords

Navigation