Skip to main content
Log in

Sexual development of Schizosaccharomyces pombe is induced by zinc or iron limitation through Ecl1 family genes

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Ecl1 family genes (ecl1 +, ecl2 +, and ecl3 +) have been identified as extenders of the chronological lifespan in Schizosaccharomyces pombe. Here, we found that the triple-deletion mutant (∆ecl1/2/3) had a defect in sexual development after entry into the stationary phase, although the mutant essentially showed normal mating and sporulation under nitrogen starvation or carbon limitation. In this study, we showed that limitation of zinc or iron can be a signal for sexual development of S. pombe cells grown in Edinburgh minimal medium until the stationary phase and that Ecl1 family genes are important for this process. Because the ∆ecl1/2/3 mutant diminishes the zinc depletion-dependent gene expression, Ecl1 family proteins may function as zinc sensors in the process of sexual development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Azuma K, Ohtsuka H, Mita S, Murakami H, Aiba H (2009) Identification and characterization of an Ecl1-family gene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 73:2787–2789

    Article  CAS  PubMed  Google Scholar 

  • Boch A, Trampczynska A, Simm C, Taudte N, Krämer U, Clemens S (2008) Loss of Zhf and the tightly regulated zinc-uptake system SpZrt1 in Schizosaccharomyces pombe reveals the delicacy of cellular zinc balance. FEMS Yeast Res 8:883–896

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Wilkinson CRM, Watt S, Penkett CJ, Toone WM, Jones N, Bähler J (2008) Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol Biol Cell 19:308–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dainty SJ, Kennedy CA, Watt S, Bähler J, Whitehall SK (2008) Response of Schizosaccharomyces pombe to zinc deficiency. Eukaryot Cell 7:454–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harigaya Y, Yamamoto M (2007) Molecular mechanisms underlying the mitosis-meiosis decision. Chromosome Res 15:523–537

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T, Watanabe Y, Yamamoto M (2002) Protein kinase A regulates sexual development and gluconeogenesis through phosphorylation of the Zn finger transcriptional activator Rst2p in fission yeast. Mol Cell Biol 22:1–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito H, Oshiro T, Fujita Y, Kubota S, Naito C, Ohtsuka H, Murakami H, Aiba H (2010) Pma1, a P-type proton ATPase, is a determinant of chronological lifespan in fission yeast. J Biol Chem 285:34616–34620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim L, Hoe KL, Yu YM, Yeon JH, Maeng PJ (2012) The fission yeast GATA factor, Gaf1, modulates sexual development via direct down-regulation of ste11 + expression in response to nitrogen starvation. PLoS One 7:e42409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kjaeruff S, Lautrup-Larsen I, Truelsen S, Pedersen M, Nielsen O (2005) Constitutive activation of the fission yeast pheromone-responsive pathway induces ectopic meiosis and reveals Ste11 as a mitogen-activated protein kinase target. Mol Cell Biol 25:2045–2059

    Article  Google Scholar 

  • Kunitomo H, Higuchi T, Iino Y, Yamamoto M (2000) A zinc-finger protein, Rst2p, regulates transcription of the fission yeast ste11 + gene, which encodes a pivotal transcription factor for sexual development. Mol Biol Cell 11:3205–3217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labbé S, Pelletier B, Mercier A (2007) Iron homeostasis in the fission yeast Schizosaccharomyces pombe. Biometals 20:523–537

    Article  PubMed  Google Scholar 

  • Mata J, Bähler J (2006) Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast. Proc Natl Acad Sci USA 103:15517–15522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M (2007) Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 27:3154–3164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  CAS  PubMed  Google Scholar 

  • Ohmiya R, Yamada H, Kato C, Aiba H, Mizuno T (2000) The Prr1 response regulator is essential for transcription of ste11 + and for sexual development in fission yeast. Mol Gen Genet 264:441–451

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Mita S, Ogawa Y, Azuma K, Ito H, Aiba H (2008) A novel gene, ecl1 +, extends the chronological lifespan in fission yeast. FEMS Yeast Res 8:520–530

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Ogawa Y, Mizuno H, Mita S, Aiba H (2009) Identification of ecl family genes that extend chronological lifespan in fission yeast. Biosci Biotechnol Biochem 73:885–889

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Azuma K, Murakami H, Aiba H (2011) hsf1 + extends chronological lifespan through Ecl1 family genes in fission yeast. Mol Genet Genomics 285:67–77

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Azuma K, Kubota S, Murakami H, Giga-Hama Y, Tohda H, Aiba H (2012) Chronological lifespan extension by Ecl1 family proteins depends on Prr1 response regulator in fission yeast. Genes Cells 17:39–52

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Ogawa S, Kawamura H, Sakai E, Ichinose K, Murakami H, Aiba H (2013) Screening for long-lived genes identifies Oga1, a guanine-quadruplex associated protein that affects the chronological lifespan of the fission yeast Schizosaccharomyces pombe. Mol Genet Genomics 288:285–295

    Article  CAS  PubMed  Google Scholar 

  • Okazaki N, Okazaki K, Watanabe Y, Kato-Hayashi M, Yamamoto M, Okayama H (1998) Novel factor highly conserved among eukaryotes controls sexual development in fission yeast. Mol Cell Biol 18:887–895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutherford JC, Jaron S, Winge DR (2003) Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements. J Biol Chem 278:27636–27643

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Yamada-Namikawa C, Murakami-Tonami Y, Yoshida T, Nakanishi M, Urano T, Murakami H (2008) Cdc2p controls the forkhead transcription factor Fkh2p by phosphorylation during sexual differentiation in fission yeast. EMBO J 27:132–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiozaki K, Russell P (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 10:2276–2288

    Article  CAS  PubMed  Google Scholar 

  • Sukegawa Y, Yamashita A, Yamamoto M (2011) The fission yeast stress-responsive MAPK pathway promotes meiosis via the phosphorylation of Pol II CTD in response to environmental and feedback cues. PLoS Genet 7:e1002387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valbuena N, Moreno S (2010) TOR and PKA pathways synergize at the level of the Ste11 transcription factor to prevent mating and meiosis in fission yeast. PLoS One 5:e11514

    Article  PubMed Central  PubMed  Google Scholar 

  • Watanabe Y, Shinozaki-Yabana S, Chikashige Y, Hiraoka Y, Yamamoto M (1997) Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature 386:187–190

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M (1996) Regulation of meiosis in fission yeast. Cell Struct Funct 21:431–436

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M (2010) The selective elimination of messenger RNA underlies the mitosis-meiosis switch in fission yeast. Proc Jpn Acad Ser B 86:788–797

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Azuma and T. Shimasaki (Nagoya University, Japan) for the helpful discussion and Drs. M. Yamamoto, A. Yamashita, and Y. Watanabe (The University of Tokyo, Japan) and Dr. K. Kitamura (Hiroshima University, Japan) for materials. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Part of this work was also supported by the Adaptable and Seamless Technology Transfer Program through target-driven R&D, JST, Nagase Science and Technology Foundation, and The Asahi Glass Foundation [to HA].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Aiba.

Additional information

Communicated by M. Collart.

H. Ohtsuka and M. Ishida contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohtsuka, H., Ishida, M., Naito, C. et al. Sexual development of Schizosaccharomyces pombe is induced by zinc or iron limitation through Ecl1 family genes. Mol Genet Genomics 290, 173–185 (2015). https://doi.org/10.1007/s00438-014-0911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0911-8

Keywords

Navigation