Skip to main content
Log in

Screening for long-lived genes identifies Oga1, a guanine-quadruplex associated protein that affects the chronological lifespan of the fission yeast Schizosaccharomyces pombe

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Schizosaccharomyces pombe and Saccharomyces cerevisiae are excellent model organisms to study lifespan. We conducted screening to identify novel genes that, when overexpressed, extended the chronological lifespan of fission yeast. We identified seven genes, among which we focused on SPBC16A3.08c. The gene product showed similarity to Ylr150w of S. cerevisiae, which has affinity for guanine-quadruplex nucleic acids (G4). The SPBC16A3.08c product associated with G4 in vitro and complemented the phenotype of an S. cerevisiae Ylr150w deletion mutant. From these results, we proposed that SPBC16A3.08c encoded for a functional homolog of Ylr150w, which we designated ortholog of G4-associated protein (oga1 +). oga1 + overexpression extended the chronological lifespan and also decreased mating efficiency and caused both high and low temperature-sensitive growth. Deleting oga1 + resulted in caffeine-sensitive and canavanine-resistant phenotypes. Based on these results, we discuss the function of Oga1 on the chronological lifespan of fission yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiba H, Kawaura R, Yamamoto E, Yamada H, Takegawa K, Mizuno T (1998) Isolation and characterization of high osmolarity sensitive mutants of fission yeast. J Bacteriol 180:5038–5043

    PubMed  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Borklu Yucel E, Ulgen KO (2011) A network-based approach on elucidating the multi-faceted nature of chronological aging in S. cerevisiae. PLoS One 6:e29284

    Article  PubMed  Google Scholar 

  • Brun C, Dubey DD, Huberman JA (1995) pDblet, a stable autonomously replicating shuttle vector for Schizosaccharomyces pombe. Gene 164:173–177

    Article  PubMed  CAS  Google Scholar 

  • Calvo IA, Gabrielli N, Iglesias-Baena I, García-Santamarina S, Hoe KL, Kim DU, Sansó M, Zuin A, Pérez P, Ayté J, Hidalgo E (2009) Genome-wide screen of genes required for caffeine tolerance in fission yeast. PLoS ONE 4:e6619

    Article  PubMed  Google Scholar 

  • Chen BR, Runge KW (2009) A new Schizosaccharomyces pombe chronological lifespan assay reveals that caloric restriction promotes efficient cell cycle exit and extends longevity. Exp Gerontol 44:493–502

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Wilkinson CRM, Watt S, Penkett CJ, Toone WM, Jones N, Bähler J (2008) Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol Biol Cell 19:308–317

    Article  PubMed  CAS  Google Scholar 

  • Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y (2006) Meiotic proteins Bqt1 and Bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69

    Article  PubMed  CAS  Google Scholar 

  • Daniel J (2005) Sir-dependent downregulation of various aging processes. Mol Genet Genomics 274:539–547

    Article  PubMed  CAS  Google Scholar 

  • Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001) Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107:489–499

    Article  PubMed  CAS  Google Scholar 

  • Dröge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370

    Article  PubMed  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328:321–326

    Article  PubMed  CAS  Google Scholar 

  • Frantz JD, Gilbert W (1995) A yeast gene product, G4p2, with a specific affinity for quadruplex nucleic acids. J Biol Chem 270:9413–9419

    Article  PubMed  CAS  Google Scholar 

  • Gallo GJ, Prentice H, Kingston RE (1993) Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 13:749–761

    PubMed  CAS  Google Scholar 

  • Hanakahi LA, Sun H, Maizels N (1999) High affinity interactions of nucleolin with G–G-paired rDNA. J Biol Chem 274:15908–15912

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh J, Kokubu A, Ebe M, Yanagida M (2007) Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells 12:1357–1370

    Article  PubMed  CAS  Google Scholar 

  • Hidayat S, Yoshino K, Tokunaga C, Hara K, Matsuo M, Yonezawa K (2003) Inhibition of amino acid-mTOR signaling by a leucine derivative induces G1 arrest in Jurkat cells. Biochem Biophys Res Commun 301:417–423

    Article  PubMed  CAS  Google Scholar 

  • Huber MD, Duquette ML, Shiels JC, Maizels N (2006) A conserved G4 DNA binding domain in RecQ family helicases. J Mol Biol 358:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Oshiro T, Fujita Y, Kubota S, Naito C, Ohtsuka H, Murakami H, Aiba H (2010) Pma1, a P-type proton ATPase, is a determinant of chronological lifespan in fission yeast. J Biol Chem 285:34616–34620

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Nakashima A, Ueno M, Ushimaru T, Aiba K, Doi H, Uritani M (2001) Fission yeast tor1 functions in response to various stresses including nitrogen starvation, high osmolarity, and high temperature. Curr Genet 39:166–174

    Article  PubMed  CAS  Google Scholar 

  • Krawchuk MD, Wahls WP (1999) High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology. Yeast 15:1419–1427

    Article  PubMed  CAS  Google Scholar 

  • Ligr M, Velten I, Fröhlich E, Madeo F, Ledig M, Fröhlich KU, Wolf DH, Hilt W (2001) The proteasomal substrate Stm1 participates in apoptosis-like cell death in yeast. Mol Biol Cell 12:2422–2432

    PubMed  CAS  Google Scholar 

  • Lipps HJ, Rhodes D (2009) G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 19:414–422

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae: mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Finkel T (2008) Free radicals and senescence. Exp Cell Res 314:1918–1922

    Article  PubMed  CAS  Google Scholar 

  • Mata J, Bähler J (2006) Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast. Proc Natl Acad Sci USA 103:15517–15522

    Article  PubMed  CAS  Google Scholar 

  • Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M (2007) Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 27:3154–3164

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama A, Arai R, Yashiroda Y, Shirai A, Kamata A, Sekido S, Kobayashi Y, Hashimoto A, Hamamoto M, Hiraoka Y, Horinouchi S, Yoshida M (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 24:841–847

    Article  PubMed  CAS  Google Scholar 

  • Miki F, Kurabayashi A, Tange Y, Okazaki K, Shimanuki M, Niwa O (2004) Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast. Mol Genet Genomics 270:449–461

    Article  PubMed  CAS  Google Scholar 

  • Miwa Y, Ohtsuka H, Naito C, Murakami H, Aiba H (2011) Ecl1, a regulator of the chronological lifespan of Schizosaccharomyces pombe, is induced upon nitrogen starvation. Biosci Biotechnol Biochem 75:279–283

    Article  PubMed  CAS  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  PubMed  CAS  Google Scholar 

  • Murai T, Nakase Y, Fukuda K, Chikashige Y, Tsutsumi C, Hiraoka Y, Matsumoto T (2009) Distinctive responses to nitrogen starvation in the dominant active mutants of the fission yeast Rheb GTPase. Genetics 183:517–527

    Article  PubMed  CAS  Google Scholar 

  • Nakashima A, Sato T, Tamanoi F (2010) Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J Cell Sci 123:777–786

    Article  PubMed  CAS  Google Scholar 

  • Nelson LD, Musso M, Van Dyke MW (2000) The yeast STM1 gene encodes a purine motif triple helical DNA-binding protein. J Biol Chem 275:5573–5581

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka H, Mita S, Ogawa Y, Azuma K, Ito H, Aiba H (2008) A novel gene, ecl1 +, extends the chronological lifespan in fission yeast. FEMS Yeast Res 8:520–530

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka H, Ogawa Y, Mizuno H, Mita S, Aiba H (2009) Identification of ecl family genes that extend chronological lifespan in fission yeast. Biosci Biotechnol Biochem 73:885–889

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka H, Azuma K, Murakami H, Aiba H (2011) hsf1 + extends chronological lifespan through Ecl1 family genes in fission yeast. Mol Genet Genomics 285:67–77

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka H, Azuma K, Kubota S, Murakami H, Giga-Hama Y, Tohda H, Aiba H (2012) Chronological lifespan extension by Ecl1 family proteins depends on Prr1 response regulator in fission yeast. Genes Cells 17:39–52

    Article  PubMed  CAS  Google Scholar 

  • Otsubo Y, Yamamoto M (2008) TOR signaling in fission yeast. Crit Rev Biochem Mol Biol 43:277–283

    Article  PubMed  CAS  Google Scholar 

  • Roux AE, Quissac A, Chartrand P, Ferbeyre G, Rokeach LA (2006) Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell 5:345–357

    Article  PubMed  CAS  Google Scholar 

  • Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P, Ferbeyre G, Rokeach LA (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet 5:e1000408

    Article  PubMed  Google Scholar 

  • Roux AE, Chartrand P, Ferbeyre G, Rokeach LA (2010) Fission yeast and other yeasts as emergent models to unravel cellular aging in eukaryotes. J Gerontology 65A:1–8

    Google Scholar 

  • Sen D, Gilbert W (1992) Guanine quartet structures. Methods Enzymol 211:191–199

    Article  PubMed  CAS  Google Scholar 

  • Stewart EV, Nwosu CC, Tong Z, Roguev A, Cummins TD, Kim DU, Hayles J, Park HO, Hoe KL, Powell DW, Krogan NJ, Espenshade PJ (2011) Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex. Mol Cell 42:160–171

    Article  PubMed  CAS  Google Scholar 

  • Takahara T, Maeda T (2012) TORC1 of fission yeast is rapamycin-sensitive. Genes Cells 17:698–708

    Article  PubMed  CAS  Google Scholar 

  • Van Dyke MW, Nelson LD, Weilbaecher RG, Mehta DV (2004) Stm1p, a G4 quadruplex and purine motif triplex nucleic acid-binding protein, interacts with ribosomes and subtelomeric Y’ DNA in Saccharomyces cerevisiae. J Biol Chem 279:24323–24333

    Article  PubMed  Google Scholar 

  • Van Dyke N, Baby J, Van Dyke MW (2006) Stm1p, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. J Mol Biol 358:1023–1031

    Article  PubMed  Google Scholar 

  • Wang L, Griffiths K Jr, Zhang YH, Ivey FD, Hoffman CS (2005) Schizosaccharomyces pombe adenylate cyclase suppressor mutations suggest a role for cAMP phosphodiesterase regulation in feedback control of glucose/cAMP signaling. Genetics 171:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Weisman R, Choder M (2001) The fission yeast TOR homolog, tor1 +, is required for the response to starvation and other stresses via a conserved serine. J Biol Chem 276:7027–7032

    Article  PubMed  CAS  Google Scholar 

  • Weisman R, Roitburg I, Nahari T, Kupiec M (2005) Regulation of leucine uptake by tor1 + in Schizosaccharomyces pombe is sensitive to rapamycin. Genetics 169:539–550

    Article  PubMed  CAS  Google Scholar 

  • Weisman R, Roitburg I, Schonbrun M, Harari R, Kupiec M (2007) Opposite effects of Tor1 and Tor2 on nitrogen starvation responses in fission yeast. Genetics 175:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Ohmiya R, Yamamoto E, Aiba H, Mizuno T (1997) Characterization of multicopy suppressor genes that complement a defect in the Wis1-Sty1 MAP kinase cascade involved in stress responses in Schizosaccharomyces pombe. J Gen Appl Microbiol 43:209–215

    Article  PubMed  CAS  Google Scholar 

  • Yanagida M (2009) Cellular quiescence: are controlling genes conserved? Trends Cell Biol 19:705–715

    Article  PubMed  CAS  Google Scholar 

  • Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos AP, Ayté J, Hidalgo E (2010) Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO 29:981–991

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Azuma for helpful discussions, M. Yamamoto (The University of Tokyo, Japan) and The National BioResource Project/Yeast Genetic Resource Center for yeast strains, and T. Ushimaru (Shizuoka University) for plasmids. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. This work was also partly supported by A Research for Promoting Technological Seeds from JST, Nagase Science and Technology Foundation, and The Asahi Glass Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Aiba.

Additional information

Communicated by M. Collart.

H. Ohtsuka and S. Ogawa contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2013_748_MOESM1_ESM.pdf

Fig. S1. Seven plasmids that remarkably extend the chronological lifespan of fission yeast. (A) Plasmids that conferred long chronological lifespans to cells included: No. 8 (closed circles), No. 10 (closed triangles), No. 16 (open triangles), No. 148 (closed squares), No. 216 (open squares), No. 226 (closed diamonds), and No. 241 (open diamonds). As a control, the lifespan of cells harboring a vector plasmid, pLB-Dblet (open circles), was determined at the same time. Strain survival rates were determined at least 3 times and essentially same results were obtained. One representative data were shown here. (B) Insert fragments of each plasmid were schematically shown. The numbers on each fragment correspond to the nucleotide positions in the chromosome shown in parenthesis. The genes that caused lifespan extension are shown in boldface. To identify genes that affected lifespan, restriction analyses were performed for some DNA fragments. Each closed triangle indicates the cut site along with the restriction enzyme name (PDF 136 kb)

438_2013_748_MOESM2_ESM.pdf

Fig. S2. Alignment of Stm1 (Ylr150w) of S. cerevisiae and Oga1 (SPBC16A3.08c) of S. pombe. Alignments of the amino acids sequences for Stm1 (Ylr150w) of S. cerevisiae and Oga1 (SPBC16A3.08c) of S. pombe. Identical amino acids between both sequences are linked by lines. Similar amino acids are marked by dots (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtsuka, H., Ogawa, S., Kawamura, H. et al. Screening for long-lived genes identifies Oga1, a guanine-quadruplex associated protein that affects the chronological lifespan of the fission yeast Schizosaccharomyces pombe . Mol Genet Genomics 288, 285–295 (2013). https://doi.org/10.1007/s00438-013-0748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0748-6

Keywords

Navigation