Skip to main content
Log in

Inhibition of SAH-hydrolase activity during seed germination leads to deregulation of flowering genes and altered flower morphology in tobacco

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Developmental processes are closely connected to certain states of epigenetic information which, among others, rely on methylation of chromatin. S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are key cofactors of enzymes catalyzing DNA and histone methylation. To study the consequences of altered SAH/SAM levels on plant development we applied 9-(S)-(2,3-dihydroxypropyl)-adenine (DHPA), an inhibitor of SAH-hydrolase, on tobacco seeds during a short phase of germination period (6 days). The transient drug treatment induced: (1) dosage-dependent global DNA hypomethylation mitotically transmitted to adult plants; (2) pleiotropic developmental defects including decreased apical dominance, altered leaf and flower symmetry, flower whorl malformations and reduced fertility; (3) dramatic upregulation of floral organ identity genes NTDEF, NTGLO and NAG1 in leaves. We conclude that temporal SAH-hydrolase inhibition deregulated floral genes expression probably via chromatin methylation changes. The data further show that plants might be particularly sensitive to accurate setting of SAH/SAM levels during critical developmental periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbes C, Sanchez J, Yebra MJ, Robertgero M, Hardisson C (1990) Effects of sinefungin and S-adenosylhomocysteine on DNA and protein methyltransferases from Streptomyces and other bacteria. FEMS Microbiol Lett 69:239–244

    Article  CAS  Google Scholar 

  • Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    Article  CAS  PubMed  Google Scholar 

  • Baubec T, Dinh HQ, Pecinka A, Rakic B, Rozhon W, Wohlrab B, von Haeseler A, Mittelsten Scheid O (2010) Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states in Arabidopsis. Plant Cell 22:34–47

    Article  CAS  PubMed  Google Scholar 

  • Benes K, Holy A, Melichar O (1984) The effect of 9-(2,3-dihydroxypropyl)adenine (DHPA) on seedling roots of Vicia faba L. in comparison with adenine, adenosine and some cytokinins. Biol Plant 26:144–150

    Article  CAS  Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72:85–95

    Article  CAS  PubMed  Google Scholar 

  • Brzezinski K, Bujacz G, Jaskolski M (2008) Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus). Acta Crystallogr Sect F Struct Biol Cryst Commun 64:671–673

    Article  PubMed  Google Scholar 

  • Cantoni GL (1986) The centrality of S-adenosylhomocysteinase in the regulation of the biological utilization of S-adenosylmethionine. In: Borchardt RT, Creveling CR, Ueland PM (eds) Biological methylation and drug design. Humana Press, Clifton, NJ, pp 227–238

    Google Scholar 

  • Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci USA 97:4979–4984

    Article  CAS  PubMed  Google Scholar 

  • Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Di Rosa A, Eneva T, Saedler H, Sommer H (1996) Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes. Plant J 10:663–677

    Article  CAS  PubMed  Google Scholar 

  • Dragun M, Rada B, Holy A (1983) Transport of antiviral agent 9-(S)-(2,3-dihydroxypropyl) adenine to animal cells. Acta Virol 27:119–129

    CAS  PubMed  Google Scholar 

  • Estruch JJ, Granell A, Hansen G, Prinsen E, Redig P, Vanonckelen H, Schwarzsommer Z, Sommer H, Spena A (1993) Floral development and expression of floral homeotic genes are influenced by cytokinins. Plant J 4:379–384

    Article  CAS  PubMed  Google Scholar 

  • Fieldes MA, Schaeffer SM, Krech MJ, Brown JC (2005) DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theor Appl Genet 111:136–149

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    Article  CAS  PubMed  Google Scholar 

  • Fojtova M, Kovarik A, Votruba I, Holy A (1998) Evaluation of the impact of S-adenosylhomocysteine metabolic pools on cytosine methylation of the tobacco genome. Eur J Biochem 252:347–352

    Article  CAS  PubMed  Google Scholar 

  • Fojtova M, Kovarik A, Matyasek R (2001) Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant Sci 160:585–593

    Article  CAS  PubMed  Google Scholar 

  • Fulnecek J, Kovarik A (2007) Low abundant spacer 5S rRNA transcripts are frequently polyadenylated in Nicotiana. Mol Genet Genomics 278:565–573

    Article  CAS  PubMed  Google Scholar 

  • Fulnecek J, Matyasek R, Kovarik A, Bezdek M (1998) Mapping of 5-methylcytosine residues in Nicotiana tabacum 5S rRNA genes by genomic sequencing. Mol Gen Genet 259:133–141

    Article  CAS  PubMed  Google Scholar 

  • Fulnecek J, Lim KY, Leitch AR, Kovarik A, Matyasek R (2002) Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19–25

    Article  CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2002) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol Plant 116:238–247

    Article  CAS  PubMed  Google Scholar 

  • Genger RK, Peacock WJ, Dennis ES, Finnegan EJ (2003) Opposing effects of reduced DNA methylation on flowering time in Arabidopsis thaliana. Planta 216:461–466

    CAS  PubMed  Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana. Waltham, Massachusetts, USA

    Google Scholar 

  • Hansen G, Estruch JJ, Sommer H, Spena A (1993) NTGLO: a tobacco homologue of the GLOBOSA floral homeotic gene of Antirrhinum majus: cDNA sequence and expression pattern. Mol Gen Genet 239:310–312

    CAS  PubMed  Google Scholar 

  • Henikoff S, Comai L (1998) A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 149:307–318

    CAS  PubMed  Google Scholar 

  • Holy A (1975) Aliphatic analogues of nucleosides, nucleotides and oligonucleotides. Collect Czech Chem C 40:187–214

    CAS  Google Scholar 

  • Holy A (2005) Synthesis of acyclic analogs of adenosine. Curr Protoc Nucleic Acid Chem 14.1.1–14.1.21

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Sakai H, Finnegan EJ, Cao X, Meyerowitz EM (2000) Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr Biol 10:179–186

    Article  CAS  PubMed  Google Scholar 

  • Jordan ND, West JP, Bottley A, Sheikh M, Furner I (2007) Transcript profiling of the hypomethylated hog1 mutant of Arabidopsis. Plant Mol Biol 65:571–586

    Article  CAS  PubMed  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  CAS  PubMed  Google Scholar 

  • Kelly AJ, Bonnlander MB, Meeks-Wagner DR (1995) NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 7:225–234

    Article  CAS  PubMed  Google Scholar 

  • Kempin SA, Mandel MA, Yanofsky MF (1993) Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol 103:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    Article  CAS  PubMed  Google Scholar 

  • Koukalova B, Reich J, Matyasek R, Kuhrova V, Bezdek M (1989) A BamHI family of highly repeated DNA sequences of Nicotiana tabacum. Theor Appl Genet 78:77–80

    Article  CAS  Google Scholar 

  • Koukalova B, Votruba I, Fojtova M, Holy A, Kovarik A (2002) Hypomethylation of CNG targets induced with dihydroxypropyladenine is rapidly reversed in the course of mitotic cell division in tobacco. Theor Appl Genet 105:796–801

    Article  CAS  PubMed  Google Scholar 

  • Kovarik A, Koukalova B, Holy A, Bezdek M (1994) Sequence-specific hypomethylation of the tobacco genome induced with dihydroxypropyladenine, ethionine and 5-azacytidine. FEBS Lett 353:309–311

    Article  CAS  PubMed  Google Scholar 

  • Kovarik A, Koukalova B, Lim KY, Matyasek R, Lichtenstein CP, Leitch AR, Bezdek M (2000a) Comparative analysis of DNA methylation in tobacco heterochromatic sequences. Chromosome Res 8:527–541

    Article  CAS  PubMed  Google Scholar 

  • Kovarik A, Van Houdt H, Holy A, Depicker A (2000b) Drug-induced hypomethylation of a posttranscriptionally silenced transgene locus of tobacco leads to partial release of silencing. FEBS Lett 467:47–51

    Article  CAS  PubMed  Google Scholar 

  • Krizova K, Fojtova M, Depicker A, Kovarik A (2009) Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles. Plant Physiol 149:1493–1504

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Lindroth AM, Shultis D, Jasencakova Z, Fuchs J, Johnson L, Schubert D, Patnaik D, Pradhan S, Goodrich J, Schubert I, Jenuwein T, Khorasanizadeh S, Jacobsen SE (2004) Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J 23:4286–4296

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Mara C (2010) Regulatory mechanisms for floral homeotic gene expression. Semin Cell Dev Biol 21:80–86

    Article  PubMed  Google Scholar 

  • Lunerova-Bedrichova J, Bleys A, Fojtova M, Khaitova L, Depicker A, Kovarik A (2008) Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant J 54:1049–1062

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    Article  CAS  PubMed  Google Scholar 

  • Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129:733–746

    Article  CAS  PubMed  Google Scholar 

  • Malagnac F, Bartee L, Bender J (2002) An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J 21:6842–6852

    Article  CAS  PubMed  Google Scholar 

  • Masuta C, Tanaka H, Uehara K, Kuwata S, Koiwai A, Noma M (1995) Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reactions. Proc Natl Acad Sci USA 92:6117–6121

    Article  CAS  PubMed  Google Scholar 

  • Mathieu O, Reinders J, Caikovski M, Smathajitt C, Paszkowski J (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–862

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    Article  CAS  PubMed  Google Scholar 

  • Melayah D, Bonnivard E, Chalhoub B, Audeon C, Grandbastien MA (2001) The mobility of the tobacco Tnt1 retrotransposon correlates with its transcriptional activation by fungal factors. Plant J 28:159–168

    Article  CAS  PubMed  Google Scholar 

  • Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430

    Article  CAS  PubMed  Google Scholar 

  • Mull L, Ebbs ML, Bender J (2006) A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase. Genetics 174:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Papa CM, Springer NM, Muszynski MG, Meeley R, Kaeppler SM (2001) Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell 13:1919–1928

    Article  CAS  PubMed  Google Scholar 

  • Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Article  CAS  PubMed  Google Scholar 

  • Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147

    Article  CAS  PubMed  Google Scholar 

  • Richards EJ (1997) DNA methylation and plant development. Trends Genet 13:319–323

    Article  CAS  PubMed  Google Scholar 

  • Rocha PS, Sheikh M, Melchiorre R, Fagard M, Boutet S, Loach R, Moffatt B, Wagner C, Vaucheret H, Furner I (2005) The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-l-homocysteine hydrolase required for DNA methylation-dependent gene silencing. Plant Cell 17:404–417

    Article  CAS  PubMed  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Bokowiec MT, Laudeman TW, Brannock JF, Chen X, Timko MP (2008) TOBFAC: the database of tobacco transcription factors. BMC Bioinform 9:53

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  Google Scholar 

  • Sebestova L, Votruba I, Holy A (1984) Studies on S-adenosyl-l-homocysteine hydrolase.11. S-adenosyl-l-homocysteine hydrolase from Nicotiana tabacum L: isolation and properties. Collect Czech Chem Commun 49:1543–1551

    Article  CAS  Google Scholar 

  • Tanaka H, Masuta C, Uehara K, Kataoka J, Koiwai A, Noma M (1997) Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-l-homocysteine hydrolase gene. Plant Mol Biol 35:981–986

    Article  CAS  PubMed  Google Scholar 

  • Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF, Voinnet O, Wincker P, Esteller M, Colot V (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604

    Article  CAS  PubMed  Google Scholar 

  • Votruba I, Holy A, De Clercq E (1983) Metabolism of the broad-spectrum antiviral agent, 9-(S)-(2,3-dihydroxypropyl) adenine, in different cell lines. Acta Virol 27:273–276

    CAS  PubMed  Google Scholar 

  • Vyskot B, Koukalova B, Kovarik A, Sachambula L, Reynolds D, Bezdek M (1995) Meiotic transmission of a hypomethylated repetitive DNA family in tobacco. Theor Appl Genet 91:659–664

    Article  CAS  Google Scholar 

  • Yuiko I, Takeshi S, Kiyotoshi T (2010) Flowering and dwarfism induced by DNA demethylation in Pharbitis nil. Physiol Plant 139:118–127

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jiří Široký for the help with pollen microscopy. The scintillation method to detect uptake and transport of DHPA was introduced by Dr. Richard Tykva at the Institute of Organic Chemistry and Biochemistry AS CR, v.v.i. and tested in tobacco plants at the Institute of Experimental Botany AS CR, v.v.i. in Prague. We further thank an anonymous referee for the idea to analyze floral gene expression. This research was funded by the Grant Agency of the Czech Republic (206/09/1751, P501/10/0208, P501/11/P667) and the Academy of Sciences of the Czech Republic (AVOZ50040507 and AVOZ50040702).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Fulneček.

Additional information

Communicated by M.-A. Grandbastien.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2536 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulneček, J., Matyášek, R., Votruba, I. et al. Inhibition of SAH-hydrolase activity during seed germination leads to deregulation of flowering genes and altered flower morphology in tobacco. Mol Genet Genomics 285, 225–236 (2011). https://doi.org/10.1007/s00438-011-0601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0601-8

Keywords

Navigation