Skip to main content
Log in

Low abundant spacer 5S rRNA transcripts are frequently polyadenylated in Nicotiana

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In plants, 5S rRNA genes (5S rDNA) encoding 120-nt structural RNA molecules of ribosomes are organized in tandem arrays comprising thousands of units. Failure to correctly terminate transcription would generate longer inaccurately processed transcripts interfering with ribosome biogenesis. Hence multiple termination signals occur immediately after the 5S rRNA coding sequence. To obtain information about the efficiency of termination of 5S rDNA transcription in plants we analyzed 5S rRNA pools in three Nicotiana species, N. sylvestris, N. tomentosiformis and N. tabacum. In addition to highly abundant 120-nt 5S rRNA transcripts, we also detected RNA species composed of a genic region and variable lengths of intergenic sequences. These genic-intergenic RNA molecules occur at a frequency severalfold lower than the mature 120-nt transcripts, and are posttranscriptionally modified by polyadenylation at their 3′ end in contrast to 120-nt transcripts. An absence of 5S small RNAs (smRNA) argue against a dominant role for the smRNA biosynthesis pathway in the degradation of aberrant 5S rRNA in Nicotiana. This work is the first description of polyadenylated 5S rRNA species in higher eukaryotes originating from a read-through transcription into the intergenic spacer. We propose that polyadenylation may function in a “quality control” pathway ensuring that only correctly processed molecules enter the ribosome biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali HB, Fransz P, Schubert I (2000) Localization of 5S RNA genes on tobacco chromosomes. Chromosome Res 8:85–87

    Article  PubMed  CAS  Google Scholar 

  • Barciszewska MZ (1994) Interaction of higher plant ribosomal 5S RNAs with Xenopus laevis transcriptional factor IIIA. Acta Biochim Pol 41:17–24

    PubMed  CAS  Google Scholar 

  • Buhler M, Haas W, Gygi SP, Moazed D (2007) RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129:707–721

    Article  PubMed  CAS  Google Scholar 

  • Chekanova JA, Dutko JA, Mian IS, Belostotsky DA (2002) Arabidopsis thaliana exosome subunit AtRrp4p is a hydrolytic 3′→5’ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res 30:695–700

    Article  PubMed  CAS  Google Scholar 

  • Cloix C, Tutois S, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S (2000) Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res 10:679–690

    Article  PubMed  CAS  Google Scholar 

  • Cloix C, Tutois S, Yukawa Y, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S (2002) Analysis of the 5S RNA pool in Arabidopsis thaliana: RNAs are heterogeneous and only two of the genomic 5S loci produce mature 5S RNA. Genome Res 12:132–144

    Article  PubMed  CAS  Google Scholar 

  • Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42:685–705

    Article  PubMed  CAS  Google Scholar 

  • Dadejova M, Lim Y, Souckova-Skalicka K, Matyasek R, Leitch AR, Grandbastien M-A, Kovarik A (2007) Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytol 166:291–303

    Google Scholar 

  • Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  PubMed  CAS  Google Scholar 

  • Fojtova M, Bleys A, Bedrichova J, Van Houdt H, Krizova K, Depicker A, Kovarik A (2006) The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res 34:2280–2293

    Article  PubMed  CAS  Google Scholar 

  • Fulnecek J, Lim KY, Leitch AR, Kovarik A, Matyasek R (2002a) Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19–25

    Article  PubMed  CAS  Google Scholar 

  • Fulnecek J, Matyasek R, Kovarik A (2002b) Distribution of 5-methylcytosine residues in 5S rRNA genes in Arabidopsis thaliana and Secale cereale. Mol Genet Genomics 268:510–517

    Article  PubMed  CAS  Google Scholar 

  • Fulnecek J, Matyasek R, Kovarik A (2006) Plant 5S rDNA has multiple alternative nucleosome positions. Genome 49:840–850

    Article  PubMed  CAS  Google Scholar 

  • Fulnecek J, Matyasek R, Kovarik A, Bezdek M (1998) Mapping of 5-methylcytosine residues in Nicotiana tabacum 5S rRNA genes by genomic sequencing. Mol Gen Genet 259:133–141

    Article  PubMed  CAS  Google Scholar 

  • Grierson D, Hemleben V (1977) Ribonucleic acid from the higher plant Matthiola incana. Molecular weight measurements and DNA-RNA hybridisation studies. Biochim Biophys Acta 475:424–436

    PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  • Hemleben V, Werts D (1988) Sequence organization and putative regulatory elements in the 5S rRNA genes of two higher plants (Vigna radiata and Matthiola incana). Gene 62:165–169

    Article  PubMed  CAS  Google Scholar 

  • Kadaba S, Wang X, Anderson JT (2006) Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 12:508–521

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA, Appels R (1995) Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140:325–343

    PubMed  CAS  Google Scholar 

  • Lapitan NLV (1992) Organization and evolution of higher plant genomes. Genome 35:171–181

    CAS  Google Scholar 

  • Lee Y, Melekhovets YF, Nazar RN (1995) Termination as factor in “quality control” during ribosome biogenesis. J Biol Chem 270:28003–28005

    Article  PubMed  CAS  Google Scholar 

  • Lisitsky I, Klaff P, Schuster G (1996) Addition of destabilizing poly (A)-rich sequences to endonuclease cleavage sites during the degradation of chloroplast mRNA. Proc Natl Acad Sci USA 93:13398–13403

    Article  PubMed  CAS  Google Scholar 

  • Mathieu O, Jasencakova Z, Vaillant I, Gendrel AV, Colot V, Schubert I, Tourmente S (2003a) Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell 15:2929–2939

    Article  PubMed  CAS  Google Scholar 

  • Mathieu O, Yukawa Y, Prieto JL, Vaillant I, Sugiura M, Tourmente S (2003b) Identification and characterization of transcription factor IIIA and ribosomal protein L5 from Arabidopsis thaliana. Nucleic Acids Res 31:2424–2433

    Article  PubMed  CAS  Google Scholar 

  • Mathieu O, Yukawa Y, Sugiura M, Picard G, Tourmente S (2002) 5S rRNA genes expression is not inhibited by DNA methylation in Arabidopsis. Plant J 29:313–323

    Article  PubMed  CAS  Google Scholar 

  • Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJ (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 1677:129–141

    PubMed  CAS  Google Scholar 

  • Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3’->5’ exoribonucleases. Cell 91:457–466

    Article  PubMed  CAS  Google Scholar 

  • Onodera Y, Haag JR, Ream T, Nunes PC, Pontes O, Pikaard CS (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613–622

    Article  PubMed  CAS  Google Scholar 

  • Pikaard CS (2001) Genomic change and gene silencing in polyploids. Trends Genet 17:675–677

    Article  PubMed  CAS  Google Scholar 

  • Platt T (1986) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55:339–372

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot N (2004) New perspectives on connecting messenger RNA 3’ end formation to transcription. Curr Opin Cell Biol 16:272–278

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schiebel K, von Waldburg G, Gerstner J, Hemleben V (1989) Termination of transcription of ribosomal RNA genes of mung bean occurs within a 175 bp repetitive element of the spacer region. Mol Gen Genet 218:302–307

    Article  PubMed  CAS  Google Scholar 

  • Slomovic S, Laufer D, Geiger D, Schuster G (2006) Polyadenylation of ribosomal RNA in human cells. Nucleic Acids Res 34:2966–2975

    Article  PubMed  CAS  Google Scholar 

  • Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2003) 5 S rRNA: structure and interactions. Biochem J 371:641–651

    Article  PubMed  CAS  Google Scholar 

  • Theunissen O, Rudt F, Guddat U, Mentzel H, Pieler T (1992) RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell 13:679–690

    Article  Google Scholar 

  • Vaillant I, Schubert I, Tourmente S, Mathieu O (2006) MOM1 mediates DNA-methylation-independent silencing of repetitive sequences in Arabidopsis. EMBO Rep 7:1273–1278

    Article  PubMed  CAS  Google Scholar 

  • van Hoof A, Lennertz P, Parker R (2000) Yeast exosome mutants accumulate 3’-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20:441–452

    Article  PubMed  Google Scholar 

  • Venkateswarlu K, Lee SW, Nazar RN (1991) Conserved upstream sequence elements in plant 5S ribosomal RNA-encoding genes. Gene 105:249–254

    Article  PubMed  CAS  Google Scholar 

  • Wahle E, Ruegsegger U (1999) 3’-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 23:277–295

    PubMed  CAS  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104

    Article  PubMed  Google Scholar 

  • Yukawa Y, Sugita M, Choisne N, Small I, Sugiura M (2000) The TATA motif, the CAA motif and the poly(T) transcription termination motif are all important for transcription re-initiation on plant tRNA genes. Plant J 22:439–447

    Article  PubMed  CAS  Google Scholar 

  • Zentgraf U, Ganal M, Hemleben V (1990) Length heterogeneity of the rRNA precursor in cucumber (Cucumis sativus). Plant Mol Biol 15:465–474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Miloslava Fojtova for help with small RNA analysis. We thank Dr Andrew R. Leitch and Dr Jana Fulneckova for critical reading of the manuscript. This work was supported by the Grant Agency of the Czech Republic (204/06/1432, 521/07/0116), Academy of Sciences (AVOZ50040507), and MSMT (LC06004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Fulnecek.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulnecek, J., Kovarik, A. Low abundant spacer 5S rRNA transcripts are frequently polyadenylated in Nicotiana . Mol Genet Genomics 278, 565–573 (2007). https://doi.org/10.1007/s00438-007-0273-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0273-6

Keywords

Navigation