Skip to main content
Log in

Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Salinity tolerance in Citrus is strongly related to leaf chloride accumulation. Both chloride homeostasis and specific genetic responses to Cl toxicity are issues scarcely investigated in plants. To discriminate the transcriptomic network related to Cl toxicity and salinity tolerance, we have used two Cl salt treatments (NaCl and KCl) to perform a comparative microarray approach on two Citrus genotypes, the salt-sensitive Carrizo citrange, a poor Cl excluder, and the tolerant Cleopatra mandarin, an efficient Cl excluder. The data indicated that Cl toxicity, rather than Na+ toxicity and/or the concomitant osmotic perturbation, is the primary factor involved in the molecular responses of citrus plant leaves to salinity. A number of uncharacterized membrane transporter genes, like NRT1-2, were differentially regulated in the tolerant and the sensitive genotypes, suggesting its potential implication in Cl homeostasis. Analyses of enriched functional categories showed that the tolerant rootstock induced wider stress responses in gene expression while repressing central metabolic processes such as photosynthesis and carbon utilization. These features were in agreement with phenotypic changes in the patterns of photosynthesis, transpiration, and stomatal conductance and support the concept that regulation of transpiration and its associated metabolic adjustments configure an adaptive response to salinity that reduces Cl accumulation in the tolerant genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ancillo G, Gadea J, Forment J, Guerri J, Navarro L (2007) Class prediction of closely related plant varieties using gene expression profiling. J Exp Bot 58:1927–1933

    Article  PubMed  CAS  Google Scholar 

  • Arbona V, Marco AJ, Iglesias DJ, López-Climent MF, Talón M, Gómez-Cadenas A (2005) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Reg 46:153–160

    Article  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Bañuls J, Primo-Millo E (1992) Effects of chloride and sodium on gas exchange parameters and water relations of Citrus plants. Physiol Plantarum 86:115–123

    Article  Google Scholar 

  • Bañuls J, Primo-Millo E (1995) Effects of salinity on some Citrus scion-rootstock combinations. Ann Bot 76:97–102

    Article  Google Scholar 

  • Bañuls J, Serna MD, Legaz F, Talon M, Primo-Millo E (1997) Growth and gas exchange parameters of Citrus plants stressed with different salts. J Plant Physiol 150:194–199

    Google Scholar 

  • Barrett HC, Rhodes AM (1976) Numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136

    Article  Google Scholar 

  • Blüthgen N, Kielbasa SM, Herzel H (2005) Inferring combinatorial regulation of transcription in silico. Nucl Acids Res 33:272–279

    Article  PubMed  CAS  Google Scholar 

  • Cercos M, Soler G, Iglesias D, Gadea J, Forment J, Talon M (2006) Global analysis of gene expression during development and ripening of Citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527

    Article  PubMed  CAS  Google Scholar 

  • Colmenero-Flores JM, Moreno LP, Smith C, Covarrubias AA (1999) Pvlea-18, a member of a new late embryogenesis abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120:93–103

    Article  PubMed  CAS  Google Scholar 

  • Colmenero-Flores JM, Martinez G, Gamba G, Vazquez N, Iglesias DJ, Brumos J, Talon M (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50:278–292

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Nueda MJ, Ferrer A, Talon M (2006) maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22:1096–1102

    Article  PubMed  CAS  Google Scholar 

  • Cramer G, Ergül A, Grimplet J, Tillett R, Tattersall E, Bohlman M, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch K, Schooley D, Cushman J (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  PubMed  CAS  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The Nitrate/Proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  CAS  Google Scholar 

  • de Vries SC, Springer J, Wessels JGH (1982) Diversity of abundant mRNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings. Planta 156:129–135

    Article  Google Scholar 

  • Fecht-Bartenbach JVD, Bogner M, Krebs M, Stierhof Y-D, Schumacher K, Ludewig U (2007) Function of the anion transporter AtCLC-d in the trans-Golgi network. Plant J 50:466–474

    Article  PubMed  CAS  Google Scholar 

  • Forment J, Gadea J, Huerta L, Abizanda L, Agusti J, Alamar S, Alos E, Andres F, Arribas R, Beltran JP, Berbel A, Blazquez MA, Brumos J, Canas LA, Cercos M, Colmenero-Flores JM, Conesa A, Estables B, Gandia M, Garcia-Martinez JL, Gimeno J, Gisbert A, Gomez G, Gonzalez-Candelas L, Granell A, Guerri J, Lafuente MT, Madueño F, Marcos JF, Marques MC, Martinez F, Martinez-Godoy MA, Miralles S, Moreno P, Navarro L, Pallas V, Perez-Amador MA, Perez-Valle J, Pons C, Rodrigo I, Rodriguez PL, Royo C, Serrano R, Soler G, Tadeo F, Talon M, Terol J, Trenor M, Vaello L, Vicente O, Vidal C, Zacarias L, Conejero V (2005) Development of a Citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391

    Article  PubMed  CAS  Google Scholar 

  • Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Müller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B, Martinoia E (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J 20:1875–1887

    Article  PubMed  CAS  Google Scholar 

  • Gandía M, Conesa A, Ancillo G, Gadea J, Forment J, Pallás V, Flores R, Duran-Vila N, Moreno P, Guerri J (2007) Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology 367:298–306

    Article  PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Geelen D, Lurin C, Bouchez D, Frachisse JM, Lelievre F, Courtial B, Barbier-brygoo H, Maurel C (2000) Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J 21:259–267

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M (1998) Involvement of abscisic acid and ethylene in the responses of Citrus seedlings to salt shock. Physiol Plant 103:475–484

    Article  Google Scholar 

  • Gómez-Cadenas A, Iglesias DJ, Arbona V, Colmenero-Flores JM, Primo-Millo E, Talón M (2003) in Recent Res Devel Plant Mol Biol, vol. 1, pp 281–298, Research Signpost, Keral

  • Hechenberger M, Schwappach B, Fischer WN, Frommer WB, Jentsch TJ, Steinmeyer K (1996) A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 271:33632–33638

    Article  PubMed  CAS  Google Scholar 

  • Herde O, Peña-Cortés HL, Willmitzer L, Fisahn J (1997) Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant Cell Environ 20:136–141

    Article  CAS  Google Scholar 

  • Huang N-C, Liu K-H, Lo H-J, Tsay Y-F (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR, Talon M (2007) Physiology of Citrus fruiting. Braz J Plant Physiol 19(4):333–362

    Article  CAS  Google Scholar 

  • Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  • Jeong J, Suh S, Guan C, Tsay Y-F, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K, Lee Y (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol 134:969–978

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–906

    Article  PubMed  CAS  Google Scholar 

  • Khelil A, Menu T, Ricard B (2007) Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiol Biochem 45:551–559

    Article  PubMed  CAS  Google Scholar 

  • Liu KH, Huang CY, Tsay Y-F (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involving multiple phases of nitrate uptake. Plant Cell 11:865–874

    Article  PubMed  CAS  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in Citrus. Env Exp Bot 62:176–184

    Article  CAS  Google Scholar 

  • Lurin C, Geelen D, Barbier-Brygoo H, Guern J, Maurel C (1996) Cloning and functional expression of a plant voltage-dependent chloride channel. Plant Cell 8(4):701–711, 8:701–711

    Article  PubMed  CAS  Google Scholar 

  • Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195–216

    PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence. A practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Moya JL, Primo-Millo E, Talon M (1999) Morphological factors determining salt tolerance in Citrus seedlings: the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant Cell Environ 22:1425–1433

    Article  CAS  Google Scholar 

  • Moya JL, Tadeo FR, Gomez-Cadenas A, Primo-Millo E, Talon M (2002) Transmissible salt tolerance traits identified through reciprocal grafts between sensitive Carrizo and tolerant Cleopatra Citrus genotypes. J Plant Physiol 159:991–998

    Article  CAS  Google Scholar 

  • Moya JL, Gomez-Cadenas A, Primo-Millo E, Talon M (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin Citrus rootstocks is linked to water use. J Exp Bot 54:825–833

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Myhre S, Tveit H, Mollestad T, Laegreid A (2006) Additional gene ontology structure for improved biological reasoning. Bioinformatics 22:2020–2027

    Article  PubMed  CAS  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    Article  PubMed  CAS  Google Scholar 

  • Nueda MJ, Conesa A, Westerhuis JA, Hoefsloot HCJ, Smilde AK, Talon M, Ferrer A (2007) Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA. Bioinformatics 23:1792–1800

    Article  PubMed  CAS  Google Scholar 

  • Ozturk ZN, Talamè V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser E, Voesenek L (2006) The Janus face of ethylene: growth inhibition and stimulation. TRENDS Plant Sci 11:176–183

    Article  PubMed  CAS  Google Scholar 

  • Poorter H (2002) Plant growth and carbon economy. In: Encyclopedia of life sciences. Macmillan Publisher, Nature Publishing Group, London

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucl Acids Res 33:W116–W120

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375

    Article  PubMed  CAS  Google Scholar 

  • Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol 169:647–666

    Article  PubMed  Google Scholar 

  • Romero-Aranda R, Moya JL, Tadeo FR, Legaz F, Primo-Millo E, Talon M (1998) Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant Citrus: beneficial and detrimental effects of cations. Plant Cell Environ 21:1243–1253

    Article  CAS  Google Scholar 

  • Sahi C, Singh A, Blumwald E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plantarum 127:1–9

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Huber W, Irizarry R, Duboit S (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, Berlin, pp 397–420

    Chapter  Google Scholar 

  • Storey R, Walker RR (1999) Citrus and salinity. Sci Hort 78:39–81

    Article  CAS  Google Scholar 

  • Sugiura M, Georgescu MN, Takahashi M (2007) A nitrite transporter associated with nitrite uptake by higher plant chloroplasts. Plant Cell Physiol 48:1022–1035

    Article  PubMed  CAS  Google Scholar 

  • Suh SJ, Wang Y-F, Frelet A, Leonhardt N, Klein M, Forestier C, Mueller-Roeber B, Cho MH, Martinoia E, Schroeder JI (2007) The ATP Binding Cassette Transporter AtMRP5 Modulates Anion and Calcium Channel Activities in Arabidopsis Guard Cells. J Biol Chem 282:1916-1924

    Article  CAS  Google Scholar 

  • Syvertsen JP, Boman B, Tucker DPH (1989) Salinity in Florida Citrus production. Proc Fla State Hort Soc 102:61–64

    Google Scholar 

  • Tadeo F, Cercos M, Colmenero-Flores JM, Iglesias DJ, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Talon M (2008) Molecular physiology of development and quality of Citrus. Adv Bot Res 47:147–223

    Article  CAS  Google Scholar 

  • Talon M, Gmitter FGJ (2008) Citrus genomics. Int J Plant Genomics ID 528361

  • Terol J, Conesa A, Colmenero J, Cercos M, Tadeo F, Agusti J, Alos E, Andres F, Soler G, Brumos J, Iglesias D, Gotz S, Legaz F, Argout X, Courtois B, Ollitrault P, Dossat C, Wincker P, Morillon R, Talon M (2007) Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 8:31

    Article  PubMed  CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    Article  CAS  Google Scholar 

  • Wing-Yen FL, Fuk-Ling W, Sau-Na T, Tsui-Hung P, Guihua S, Hon-Ming L (2006) Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant Cell Environ 29:1122

    Article  CAS  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition. In Advances in Agronomy. Elsevier vol 68, pp 96–150

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucl Acids Res 30:e15

    Article  PubMed  Google Scholar 

  • Yeo AR, Lee L-S, Izard P, Boursier PJ, Flowers TJ (1991) Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). J Exp Bot 42:881–889

    Article  CAS  Google Scholar 

  • Yokoyama T, Kodama N, Aoshima H, Izu H, Matsushita K, Yamada M (2001) Cloning of a cDNA for a constitutive NRT1 transporter from soybean and comparison of gene expression of soybean NRT1 transporters. Biochim Biophys Acta 1518:79–86

    PubMed  CAS  Google Scholar 

  • Zhou J-J, Theodoulou FL, Muldin I, Ingemarsson B, Miller AJ (1998) Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem 273:12017–12023

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work at Centro de Genómica was supported by INCO UE project 015453 and Ministerio de Educación y Ciencia-FEDER grant AGL2007-65437-C04-01/AGR. Help and expertise of A. Almenar, A. Boix, A. López, E Blázquez, I. López, I. Sanchís, and M. Sancho are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Talón.

Additional information

José M. Colmenero-Flores and J. Brumós contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Tables

(XLS 478 kb)

Supplemental Figures

(PPT 490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brumós, J., Colmenero-Flores, J.M., Conesa, A. et al. Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Funct Integr Genomics 9, 293–309 (2009). https://doi.org/10.1007/s10142-008-0107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0107-6

Keywords

Navigation